Klasifikasi Data pada Sistem Penjurusan dengan Preferensi Standar Simple Additive Weighting (PS-SAW)

Academic potential of students becomes the main success factor in learning activity. Academic potential analysis with various types of variables requires reliable computational classification techniques. The main objective of this study is to implement the Simple Additive Weighting formula with Standard Preference approach (PS-SAW) as a new technique in classification field. In this study, PS-SAW was implemented based on research need and research objectives. The PS-SAW method was applied by finding average value of preferences from the best data classification as a standard preference, and further becomes the basis for determining the classification of new data. The results showed that the implementation of PS-SAW in data test was more selective than the basic SAW with selectivity about 21,02%, and early recommendation by 85,99%. This research can be a reference for building major system and can be implemented in general application classification system.

[1]  Teknik Informatika,et al.  Algoritma Naive Bayes Naive Bayes Classifier ( NBC ) , 2015 .

[2]  Antonius Agung Hartono Sistem Pendukung Keputusan pada Penjurusan Siswa Terkendala dengan metode Analytic Hierarchy Process , 2014 .

[3]  Retantyo Wardoyo,et al.  Fuzzy Multi-Attribute Decision Making (Fuzzy MADM) , 2013 .

[4]  María José del Jesús,et al.  A first approach to handle fuzzy emerging patterns mining on big data problems: The EvAEFP-spark algorithm , 2017, 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[5]  Rusdiansyah Rusdiansyah,et al.  ANALISIS KEPUTUSAN MENENTUKAN JURUSAN PADA SEKOLAH MENENGAH KEJURUAN DENGAN METODE SIMPLE ADDITIVE WEIGHTING , 2017 .

[6]  Javeed Kittur Optimal generation evaluation using SAW, WP, AHP and PROMETHEE multi - criteria decision making techniques , 2015, 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy).

[7]  A. Asmara Implementasi Metode Simple Additive Weighting (SAW) Dalam Memprediksi Calon Mahasiswa Dropout STMIK STIKOM Bali , 2016 .

[8]  Mursid N. Yushanafi PERBEDAAN MINAT DAN PRESTASI BELAJAR SISWA PADA MATA DIKLAT MENGOPERASIKAN SISTEM PENGENDALI ELEKTRONIK DENGAN MENGGUNAKAN SOFTWARE TUTORIAL PLC SISWA KELAS XI SMK NEGERI 2 PENGASIH , 2012 .

[9]  Christian S. Jensen,et al.  Efficiently adapting graphical models for selectivity estimation , 2012, The VLDB Journal.

[10]  A. R. Afshari,et al.  Project manager selection by using Fuzzy Simple Additive Weighting method , 2012, 2012 International Conference on Innovation Management and Technology Research.

[11]  El-Sayed M. El-Alfy,et al.  Selectivity estimation of extended XML query tree patterns based on prime number labeling and synopsis modeling , 2016, Simul. Model. Pract. Theory.

[12]  Lukito Edi Nugroho,et al.  Perancangan Data Warehouse Sistem Informasi Eksekutif untuk Data Akademik Program Studi , 2012 .

[13]  Etin Indrayani,et al.  Pengelolaan Sistem Informasi Akademik Perguruan Tinggi Berbasis Teknologi Informasi Dan Komunikasi Tik , 2011 .

[14]  Sari Widya Sihwi,et al.  Perbandingan Penggunaan Metode AHP dan SAW untuk Sistem Pendukung Keputusan Pemilihan Paket Layanan Internet , 2016 .

[15]  Andri Pranolo,et al.  Simple additive weighting method on intelligent agent for urban forest health monitoring , 2014, 2014 International Conference on Computer, Control, Informatics and Its Applications (IC3INA).