A converse approach to the calculation of NMR shielding tensors

We introduce an alternative approach to the first-principles calculation of NMR shielding tensors. These are obtained from the derivative of the orbital magnetization with respect to the application of a microscopic, localized magnetic dipole. The approach is simple, general, and can be applied to either isolated or periodic systems. Calculated results for simple hydrocarbons, crystalline diamond, and liquid water show very good agreement with established methods and experimental results.

[1]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[2]  Orbital magnetization in periodic insulators. , 2005, Physical review letters.

[3]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[4]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[5]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[6]  D. Vanderbilt,et al.  Orbital magnetization in extended systems. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  Bernd G. Pfrommer,et al.  Unconstrained Energy Functionals for Electronic Structure Calculations , 1998 .

[8]  E. Oldfield,et al.  An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. , 2002, Journal of the American Chemical Society.

[9]  Francesco Mauri,et al.  Nonlocal pseudopotentials and magnetic fields. , 2003, Physical review letters.

[10]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[11]  Louie,et al.  Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids. , 1996, Physical review letters.

[12]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[13]  G. Vignale,et al.  Quantum theory of orbital magnetization and its generalization to interacting systems. , 2007, Physical review letters.

[14]  Daniel Sebastiani,et al.  A New ab-Initio Approach for NMR Chemical Shifts in Periodic Systems , 2001 .

[15]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[16]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[17]  I. Rabi,et al.  A New Method of Measuring Nuclear Magnetic Moment , 1938 .

[18]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[19]  W. G. Schneider,et al.  Proton Magnetic Resonance Chemical Shift of Free (Gaseous) and Associated (Liquid) Hydride Molecules , 1958 .

[20]  E. R. Andrew,et al.  Nuclear Magnetic Resonance , 1955 .

[21]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[22]  Francesco Mauri,et al.  Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials , 2007 .

[23]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[24]  M. Parrinello,et al.  Ab-initio study of NMR chemical shifts of water under normal and supercritical conditions. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Bernd G. Pfrommer,et al.  NMR chemical shifts of ice and liquid water: The effects of condensation , 2000 .

[26]  Berry phase correction to electron density of states in solids. , 2005, cond-mat/0502340.

[27]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[28]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[29]  Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals , 2005, cond-mat/0512142.