Leveraging Neurodata to Support Web User Behavior Analysis

Given its complexity, understanding the behavior of users on the Web has been one of the most challenging tasks for data mining-related fields. Historically, most of the approaches have considered web logs as the main source of data. This has led to several successful cases, both in industry and academia, but has also presented several issues and limitations. Given the new challenges and the need for personalization, improvement is required in the overall understanding of the processes that lie behind web browsing decision making. The use of neurodata to support this analysis represents a huge opportunity in terms of understanding the actions taken by the user on the web in a more comprehensive way. Techniques such as eye tracking, pupil dilation and EEG analysis could provide valuable information to craft more robust models. This chapter overviews the current state of the art of the use of neurodata for web-based analysis, providing a description and analysis in terms of the feasibility and effectiveness of each strategy given a specific problem.

[1]  Pablo E. Román,et al.  Cognitive Science forWeb Usage Analysis , 2013 .

[2]  D. Quah Digital Goods and the New Economy , 2003 .

[3]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[4]  Yuchun Lee,et al.  Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks , 1991, Neural Computation.

[5]  Yuming Zhou,et al.  MNav: A Markov Model-Based Web Site Navigability Measure , 2007, IEEE Transactions on Software Engineering.

[6]  Andrew T. Duchowski,et al.  Eye Tracking Methodology - Theory and Practice, Third Edition , 2003 .

[7]  Margot J. Taylor,et al.  Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. , 2000, Psychophysiology.

[8]  S. Luck An Introduction to the Event-Related Potential Technique , 2005 .

[9]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[10]  Eugene Agichtein,et al.  Towards predicting web searcher gaze position from mouse movements , 2010, CHI Extended Abstracts.

[11]  J. Hoffman,et al.  The role of visual attention in saccadic eye movements , 1995, Perception & psychophysics.

[12]  Tzung-Pei Hong,et al.  A practical extension of web usage mining with intentional browsing data toward usage , 2009, Expert Syst. Appl..

[13]  Anand Rajaraman,et al.  Mining of Massive Datasets , 2011 .

[14]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[15]  Ian Krajbich,et al.  Visual fixations and the computation and comparison of value in simple choice , 2010, Nature Neuroscience.

[16]  Jason I. Hong,et al.  End-User Privacy in Human-Computer Interaction , 2007, Found. Trends Hum. Comput. Interact..

[17]  Jason I. Hong,et al.  Contextual web history: using visual and contextual cues to improve web browser history , 2009, CHI.

[18]  Juan D. Velásquez,et al.  Extracting significant Website Key Objects: A Semantic Web mining approach , 2011, Eng. Appl. Artif. Intell..

[19]  Thierry Baccino,et al.  Eye fixation–related potentials (EFRPs) during object identification , 2010, Visual Neuroscience.

[20]  W. James The Principles of Psychology, Vol. I , 2008 .

[21]  Susan T. Dumais,et al.  The good, the bad, and the random: an eye-tracking study of ad quality in web search , 2010, SIGIR.

[22]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 2000, Artif. Intell..

[23]  Juan D. Velásquez,et al.  Web site keywords: A methodology for improving gradually the web site text content , 2012, Intell. Data Anal..

[24]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[25]  Wolfgang Rosenstiel,et al.  Nessi: An EEG-Controlled Web Browser for Severely Paralyzed Patients , 2007, Comput. Intell. Neurosci..

[26]  Thierry Baccino,et al.  Decision-making in information seeking on texts: an eye-fixation-related potentials investigation , 2013, Front. Syst. Neurosci..

[27]  Gerhard Weikum,et al.  Data quality in web archiving , 2009, WICOW.

[28]  Martin Wattenberg,et al.  Ad click prediction: a view from the trenches , 2013, KDD.

[29]  Ryen W. White,et al.  User see, user point: gaze and cursor alignment in web search , 2012, CHI.

[30]  Václav Snásel,et al.  A novel approach for comparing web sites by using MicroGenres , 2014, Eng. Appl. Artif. Intell..

[31]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[32]  Cláudio T. Silva,et al.  A User Study of Visualization Effectiveness Using EEG and Cognitive Load , 2011, Comput. Graph. Forum.

[33]  E. Vogel,et al.  Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  D. Ballard,et al.  Eye guidance in natural vision: reinterpreting salience. , 2011, Journal of vision.

[36]  J. Findlay,et al.  The Relationship between Eye Movements and Spatial Attention , 1986, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[37]  Wolfgang Maass,et al.  Ontology-Based Natural Language Processing for In-store Shopping Situations , 2009, 2009 IEEE International Conference on Semantic Computing.

[38]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[39]  Cees van Leeuwen,et al.  Eye fixation-related potentials in free viewing identify encoding failures in change detection , 2011, NeuroImage.

[40]  Jochen J. Steil,et al.  Where to Look Next? Combining Static and Dynamic Proto-objects in a TVA-based Model of Visual Attention , 2010, Cognitive Computation.

[41]  Pablo E. Román,et al.  Web User Session Reconstruction Using Integer Programming , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[42]  Krista A. Ehinger,et al.  Modelling search for people in 900 scenes: A combined source model of eye guidance , 2009 .

[43]  Hao Jiang,et al.  User-oriented document summarization through vision-based eye-tracking , 2009, IUI.

[44]  Juan D. Velásquez,et al.  Web mining and privacy concerns: Some important legal issues to be consider before applying any data and information extraction technique in web-based environments , 2013, Expert Syst. Appl..

[45]  Juan D. Velásquez,et al.  Combining eye tracking and pupillary dilation analysis to identify Website Key Objects , 2015, Neurocomputing.

[46]  Katsumi Aoki,et al.  Flying characteristics of the new official rubber baseball , 2009, J. Vis..

[47]  G. McConkie,et al.  Eye movements and integrating information across fixations. , 1978, Journal of experimental psychology. Human perception and performance.

[48]  T. Foulsham,et al.  What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. , 2008, Journal of vision.

[49]  Boris Reuderink,et al.  Distinguishing between target and nontarget fixations in a visual search task using fixation-related potentials. , 2013, Journal of vision.

[50]  Michihiko Minoh,et al.  Modeling hypermedia-based communication , 2005, Inf. Sci..

[51]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[52]  Alexander J. Smola,et al.  Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts , 2013, WWW.

[53]  Klaus Bartl,et al.  Mobile eye tracking as a basis for real-time control of a gaze driven head-mounted video camera , 2006, ETRA '06.

[54]  Pablo E. Román,et al.  Identifying web sessions with simulated annealing , 2014, Expert Syst. Appl..

[55]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[56]  Ignacio Requena,et al.  Are artificial neural networks black boxes? , 1997, IEEE Trans. Neural Networks.

[57]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[58]  Eelco Herder,et al.  Web page revisitation revisited: implications of a long-term click-stream study of browser usage , 2007, CHI.

[59]  Thierry Baccino,et al.  Eye movements and concurrent event-related potentials: Eye fixation-related potential investigations in reading , 2011 .

[60]  Yuichi Murai,et al.  Visualization of transient interfacial waves induced by spin-up of two immiscible fluid layers , 2010, J. Vis..

[61]  Juan D. Velásquez,et al.  Combining eye-tracking technologies with web usage mining for identifying Website Keyobjects , 2013, Eng. Appl. Artif. Intell..

[62]  Andreas Dengel,et al.  Attentive documents: Eye tracking as implicit feedback for information retrieval and beyond , 2012, TIIS.

[63]  Ana Pont,et al.  Dweb model: Representing Web 2.0 dynamism , 2009, Comput. Commun..

[64]  Pablo E. Román,et al.  A neurology-inspired model of web usage , 2014, Neurocomputing.

[65]  Myra Spiliopoulou,et al.  The Impact of Site Structure and User Environment on Session Reconstruction in Web Usage Analysis , 2002, WEBKDD.

[66]  S J Luck,et al.  Spatial filtering during visual search: evidence from human electrophysiology. , 1994, Journal of experimental psychology. Human perception and performance.

[67]  Maria Moloney,et al.  A Privacy Control Theory for Online Environments , 2009 .

[68]  John R. Anderson,et al.  What can a mouse cursor tell us more?: correlation of eye/mouse movements on web browsing , 2001, CHI Extended Abstracts.

[69]  Nitin Indurkhya,et al.  Handbook of Natural Language Processing , 2010 .

[70]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[71]  A. Yagi,et al.  Eye fixation related potentials in a proof reading task. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[72]  Juan D. Velásquez,et al.  Characterizing Web User Visual Gaze Patterns: A Graph Theory Inspired Approach , 2014, Brain Informatics and Health.

[73]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[74]  Benjamin W. Tatler,et al.  Current understanding of eye guidance , 2009 .

[75]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[76]  Luis Gravano,et al.  When one sample is not enough: improving text database selection using shrinkage , 2004, SIGMOD '04.

[77]  Ryen W. White,et al.  WWW 2007 / Track: Browsers and User Interfaces Session: Personalization Investigating Behavioral Variability in Web Search , 2022 .

[78]  Debasish Biswas,et al.  Visualization of unsteady viscous flow around turbine blade , 2008, J. Vis..

[79]  V. Palade,et al.  Adaptive Web Sites - A Knowledge Extraction from Web Data Approach , 2008, Frontiers in Artificial Intelligence and Applications.

[80]  Ning Zhong,et al.  Impending Brain Informatics Research from Web Intelligence Perspective , 2006, Int. J. Inf. Technol. Decis. Mak..

[81]  Meredith Ringel Morris,et al.  What do you see when you're surfing?: using eye tracking to predict salient regions of web pages , 2009, CHI.

[82]  Pablo E. Román,et al.  A Web Browsing Cognitive Model , 2012, KES.

[83]  B. Dosher,et al.  The role of attention in the programming of saccades , 1995, Vision Research.

[84]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[85]  Domonkos Tikk,et al.  Major components of the gravity recommendation system , 2007, SKDD.

[86]  Sankar K. Pal,et al.  Web mining in soft computing framework: relevance, state of the art and future directions , 2002, IEEE Trans. Neural Networks.

[87]  G. Buzsáki Rhythms of the brain , 2006 .

[88]  Takehiko Ohno EyePrint: support of document browsing with eye gaze trace , 2004, ICMI '04.

[89]  Mariano Sigman,et al.  Fixation-related potentials in visual search: a combined EEG and eye tracking study. , 2012, Journal of vision.

[90]  Alan F. Smeaton,et al.  Eye fixation related potentials in a target search task , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[91]  C. Koch,et al.  Probabilistic modeling of eye movement data during conjunction search via feature-based attention. , 2007, Journal of vision.

[92]  D. E. Irwin,et al.  Visual Memory Within and Across Fixations , 1992 .

[93]  R. Doyle The American terrorist. , 2001, Scientific American.

[94]  Eileen Kowler Eye movements: The past 25years , 2011, Vision Research.

[95]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[96]  Ryen W. White,et al.  Improving searcher models using mouse cursor activity , 2012, SIGIR '12.

[97]  Ricardo A. Baeza-Yates,et al.  Characterization of national Web domains , 2007, TOIT.

[98]  S. Luck,et al.  Electrophysiological correlates of feature analysis during visual search. , 1994, Psychophysiology.

[99]  Liang-Shih Fan,et al.  Electrical capacitance tomography imaging of gas-solid and gas-liquid-solid fluidized bed systems , 2004, J. Vis..

[100]  Jacob L. Orquin,et al.  Attention and choice: a review on eye movements in decision making. , 2013, Acta psychologica.

[101]  E. Vogel,et al.  The visual N1 component as an index of a discrimination process. , 2000, Psychophysiology.