Ligand interactions with galactose oxidase: mechanistic insights.

[1]  J. Freeman,et al.  Mechanisms of copper enzymes , 1992 .

[2]  C. Ruggiero,et al.  Synthesis and structural characterization of a mononuclear copper nitrosyl complex , 1992 .

[3]  J. W. Whittaker,et al.  Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies of the Radical Site in Galactose Oxidase and of Thioether-Substituted Phenol Model Compounds , 1992 .

[4]  F. A. Neugebauer,et al.  The free radical in pyruvate formate-lyase is located on glycine-734. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Frey Importance of Organic Radicals in Enzymatic Cleavage of Unactivated C‐ H Bonds , 1991 .

[6]  J. W. Whittaker,et al.  A tyrosine-derived free radical in apogalactose oxidase. , 1990, The Journal of biological chemistry.

[7]  J. W. Whittaker,et al.  Oxidation-State Assignments for Galactose Oxidase Complexes from X-ray Absorption Spectroscopy. Evidence for Cu(II) in the Active Enzyme , 1990 .

[8]  J. W. Whittaker,et al.  Resonance Raman evidence for tyrosine involvement in the radical site of galactose oxidase. , 1989, The Journal of biological chemistry.

[9]  J. Stubbe Protein radical involvement in biological catalysis? , 1989, Annual review of biochemistry.

[10]  J. Stubbe,et al.  Radicals in biological catalysis. , 1988, Biochemistry.

[11]  J. W. Whittaker,et al.  The active site of galactose oxidase. , 1988, The Journal of biological chemistry.

[12]  A. Gorren,et al.  The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes. , 1987, Biochimica et biophysica acta.

[13]  D. Kosman,et al.  Solvent and solvent proton dependent steps in the galactose oxidase reaction. , 1987, Biochemistry.

[14]  R. Hamlin,et al.  Crystal structure of cytochrome c peroxidase compound I. , 1987, Biochemistry.

[15]  A. Klibanov,et al.  Stereospecific oxidation of aliphatic alcohols catalyzed by galactose oxidase. , 1982, Biochemical and biophysical research communications.

[16]  H. Gray,et al.  Reactions of nitric oxide with tree and fungal laccase. , 1981, Biochemistry.

[17]  D. Kosman,et al.  Magnetic resonance studies of cyanide and fluoride binding to galactose oxidase copper(II): evidence for two exogenous ligand sites , 1981 .

[18]  B. Sjöberg,et al.  The tyrosine free radical in ribonucleotide reductase from Escherichia coli. , 1978, The Journal of biological chemistry.

[19]  G. Richards Molecular orbital theory , 1976, Nature.

[20]  M. Dunn A comparison of the kinetics and stoichiometry of proton uptake with aldehyde reduction for liver alcohol dehydrogenase under single turnover conditions. , 1974, Biochemistry.

[21]  D. Kosman,et al.  Stereoelectronic properties of metalloenzymes. II. Effects of ligand coordination on the electron spin resonance spectrum of galactose oxidase as a probe of structure and function. , 1974, Journal of the American Chemical Society.

[22]  G. H. Reed,et al.  Electromagnetic properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apohemoprotein complexes. , 1972, The Journal of biological chemistry.

[23]  Robert Barker,et al.  Organic chemistry of biological compounds , 1971 .

[24]  H. Gutfreund,et al.  Physical Biochemistry , 1970, Nature.

[25]  Stuart A. Rice,et al.  Inorganic Electronic Spectroscopy , 1968 .

[26]  B. Horecker,et al.  The D-galactose oxidase of Polyporus circinatus. , 1962, The Journal of biological chemistry.

[27]  E. C. Lim,et al.  Effect of Oxygen on the Ultraviolet Spectra of Benzene , 1962 .

[28]  C. Ballhausen,et al.  Introduction to Ligand Field Theory , 1962 .

[29]  H. Margenau,et al.  Theory of Magnetic Resonance in Nitric Oxide , 1950 .

[30]  J. G. Castle,et al.  Magnetic Resonance Absorption in Nitric Oxide , 1950 .