The joint allele frequency spectrum of multiple populations: a coalescent theory approach.

[1]  M Kimura,et al.  SOLUTION OF A PROCESS OF RANDOM GENETIC DRIFT WITH A CONTINUOUS MODEL. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[3]  M. Kimura The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. , 1969, Genetics.

[4]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[5]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.

[6]  T. Ohta,et al.  The effect of selected linked locus on heterozygosity of neutral alleles (the hitch-hiking effect). , 1975, Genetical research.

[7]  Samuel Kotz,et al.  Urn Models and Their Application: An Approach to Modern Discrete Probability Theory , 1978 .

[8]  C. J-F,et al.  THE COALESCENT , 1980 .

[9]  R. Hudson Properties of a neutral allele model with intragenic recombination. , 1983, Theoretical population biology.

[10]  F. Tajima Evolutionary relationship of DNA sequences in finite populations. , 1983, Genetics.

[11]  S. Tavaré,et al.  Line-of-descent and genealogical processes, and their applications in population genetics models. , 1984, Theoretical population biology.

[12]  M. Nei,et al.  Gene genealogy and variance of interpopulational nucleotide differences. , 1985, Genetics.

[13]  D. Pierce,et al.  Residuals in Generalized Linear Models , 1986 .

[14]  M. Nordborg,et al.  Coalescent Theory , 2019, Handbook of Statistical Genomics.

[15]  N L Kaplan,et al.  The coalescent process in models with selection. , 1988, Genetics.

[16]  R. Hudson Gene genealogies and the coalescent process. , 1990 .

[17]  D. Hartl,et al.  Population genetics of polymorphism and divergence. , 1992, Genetics.

[18]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[19]  S. Tavaré,et al.  Sampling theory for neutral alleles in a varying environment. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  Y. Fu,et al.  Statistical properties of segregating sites. , 1995, Theoretical population biology.

[21]  Jon A Yamato,et al.  Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. , 1995, Genetics.

[22]  M. Slatkin Gene genealogies within mutant allelic classes. , 1996, Genetics.

[23]  J. Wakeley,et al.  Estimating ancestral population parameters. , 1997, Genetics.

[24]  Stephen M. Krone,et al.  Ancestral Processes with Selection , 1997, Theoretical population biology.

[25]  S. Tavaré,et al.  The age of a mutation in a general coalescent tree , 1998 .

[26]  Nicholas H. Barton,et al.  The effect of hitch-hiking on neutral genealogies , 1998 .

[27]  D. Hartl,et al.  Directional selection and the site-frequency spectrum. , 2001, Genetics.

[28]  Pui-Yan Kwok,et al.  Sequence variations in the public human genome data reflect a bottlenecked population history , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Richard R. Hudson,et al.  Generating samples under a Wright-Fisher neutral model of genetic variation , 2002, Bioinform..

[30]  S. Wooding,et al.  The matrix coalescent and an application to human single-nucleotide polymorphisms. , 2002, Genetics.

[31]  M. Kimmel,et al.  A note on distributions of times to coalescence, under time-dependent population size. , 2003, Theoretical population biology.

[32]  M. Kimmel,et al.  New explicit expressions for relative frequencies of single-nucleotide polymorphisms with application to statistical inference on population growth. , 2003, Genetics.

[33]  Richard Durrett,et al.  Approximating selective sweeps. , 2004, Theoretical population biology.

[34]  D. Balding,et al.  Handbook of statistical genetics , 2004 .

[35]  Gabor T. Marth,et al.  The Allele Frequency Spectrum in Genome-Wide Human Variation Data Reveals Signals of Differential Demographic History in Three Large World Populations , 2004, Genetics.

[36]  J. Hermisson,et al.  Soft Sweeps , 2005, Genetics.

[37]  Ryan D. Hernandez,et al.  Simultaneous inference of selection and population growth from patterns of variation in the human genome , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Gabriel,et al.  Calibrating a coalescent simulation of human genome sequence variation. , 2005, Genome research.

[39]  A. Wakolbinger,et al.  An approximate sampling formula under genetic hitchhiking , 2005, math/0503485.

[40]  J. Mullikin,et al.  Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans , 2007, Nature Genetics.

[41]  Steven N Evans,et al.  Non-equilibrium theory of the allele frequency spectrum. , 2006, Theoretical population biology.

[42]  M. Slatkin,et al.  The Joint Allele-Frequency Spectrum in Closely Related Species , 2007, Genetics.

[43]  N. Rosenberg,et al.  Estimating the Number of Ancestral Lineages Using a Maximum-Likelihood Method Based on Rejection Sampling , 2007, Genetics.

[44]  E. Thompson,et al.  A two-stage pruning algorithm for likelihood computation for a population tree. , 2008, Genetics.

[45]  Ryan D. Hernandez,et al.  Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data , 2009, PLoS genetics.

[46]  Kevin C. Chen,et al.  Non-equilibrium allele frequency spectra via spectral methods. , 2010, Theoretical population biology.

[47]  C. Simulating Probability Distributions in the Coalescent * , 2022 .