Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results

The Thermal Emission Spectrometer (TES) investigation on Mars Global Surveyor (MGS) is aimed at determining (1) the composition of surface minerals, rocks, and ices; (2) the temperature and dynamics of the atmosphere; (3) the properties of the atmospheric aerosols and clouds; (4) the nature of the polar regions; and (5) the thermophysical properties of the surface materials. These objectives are met using an infrared (5.8- to 50-μm) interferometric spectrometer, along with broadband thermal (5.1- to 150-μm) and visible/near-IR (0.3- to 2.9-μm) radiometers. The MGS TES instrument weighs 14.47 kg, consumes 10.6 W when operating, and is 23.6×35.5×40.0 cm in size. The TES data are calibrated to a 1-σ precision of 2.5−6×10−8 W cm−2 sr−1/cm−1, 1.6×10−6 W cm−2 sr−1, and ∼0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively. These instrument subsections are calibrated to an absolute accuracy of ∼4×10−8 W cm−2 sr−1/cm−1 (0.5 K at 280 K), 1–2%, and ∼1–2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-μm) carbonates exposed at the surface at a detection limit of ∼10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above a detection limit of ∼10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of ∼15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified low-inertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock.

[1]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[2]  H. Kieffer,et al.  TES premapping data: Slab ice and snow flurries in the Martian north polar night , 2001 .

[3]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[4]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[5]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[6]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[7]  John C. Pearl,et al.  Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing , 2000 .

[8]  J. Bandfield,et al.  Spectral data set factor analysis and end-member recovery: Application to analysis of Martian atmospheric particulates , 2000 .

[9]  M. Mellon,et al.  The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[10]  Hugh H. Kieffer,et al.  Mars south polar spring and summer behavior observed by TES: Seasonal cap evolution controlled by frost grain size , 2000 .

[11]  P. Christensen,et al.  Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy , 2000 .

[12]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[13]  V. Hamilton Thermal infrared emission spectroscopy of the pyroxene mineral series , 2000 .

[14]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[15]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[16]  M. Mellon,et al.  High‐resolution thermal inertia mapping of Mars: Sites of exobiological interest , 2000 .

[17]  M. Mellon,et al.  Mars' "White Rock" Feature Lacks Evidence of an Aqueous Origin , 2000 .

[18]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[19]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[20]  P. Christensen,et al.  Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks , 1999 .

[21]  Melissa D. Lane,et al.  Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite , 1999 .

[22]  D. A. Howard,et al.  Identification of sand sources and transport pathways at the Kelso Dunes, California, using thermal infrared remote sensing , 1999 .

[23]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[24]  Harry Y. McSween,et al.  The Thermal Emission Imaging System (THEMIS) Instrument for the Mars 2001 Orbiter , 1999 .

[25]  S. Ruff THERMAL-INFRARED SPECTRAL CHARACTERISTICS OF MARTIAN ALBEDO FEATURES: CLUES TO COMPOSITION , 1999 .

[26]  Bruce M. Jakosky,et al.  Atmospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering , 1998 .

[27]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[28]  Raymond E. Arvidson,et al.  Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites , 1997 .

[29]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[30]  Philip R. Christensen,et al.  Thermal infrared emission spectroscopy of anhydrous carbonates , 1997 .

[31]  S. Erard,et al.  In situ compositions of Martian volcanics: Implications for the mantle , 1997 .

[32]  H. McSween,et al.  Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy , 1997 .

[33]  Kenneth S. Edgett,et al.  Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani , 1997 .

[34]  J. Bell,et al.  Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibration, and initial results , 1997 .

[35]  R. Morris,et al.  Low‐temperature reflectivity spectra of red hematite and the color of Mars , 1997 .

[36]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[37]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[38]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[39]  Thomas B. McCord,et al.  Indications of sulfate minerals in the Martian soil from Earth‐based spectroscopy , 1995 .

[40]  Y L Yung,et al.  Loss of atmosphere from Mars due to solar wind-induced sputtering , 1995, Science.

[41]  Jeffrey Edward Moersch,et al.  Thermal emission from particulate surfaces : a comparison of scattering models with measured spectra , 1995 .

[42]  J F Mustard,et al.  Seeing through the dust: martian crustal heterogeneity and links to the SNC meteorites , 1995, Science.

[43]  S. Hook,et al.  Mapping the Piute Mountains, California, with thermal infrared multispectral scanner (TIMS) images , 1994 .

[44]  K. Edgett,et al.  Mars aeolian sand: Regional variations among dark-hued crater floor features , 1994 .

[45]  K. Edgett,et al.  Opportunity to sample something different: The dark, unweathered, mafic sands of Cerberus and the Pathfinder 1997 Mars landing , 1994 .

[46]  P. Christensen,et al.  Thermal infrared emission spectroscopy of natural surfaces : Application to desert varnish coatings on rocks. , 1993 .

[47]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[48]  C. McKay,et al.  A Model for the Evolution of CO 2 on Mars , 1993 .

[49]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[50]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[51]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[52]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[53]  J. Pollack,et al.  Mars - Epochal climate change and volatile history , 1992 .

[54]  K. Edgett,et al.  THE PARTICLE SIZE OF MARTIAN AEOLIAN DUNES , 1991 .

[55]  R. Haberle,et al.  Atmospheric effects on the remote determination of thermal inertia on mars , 1991 .

[56]  John W. Salisbury,et al.  Infrared (2.1-25 μm) spectra of minerals , 1991 .

[57]  C. Sotin,et al.  Interpretation of Spectral Units of Isidis-Syrtis Major from ISM-Phobos-2 Observations , 1990 .

[58]  H. Kieffer H2O grain size and the amount of dust in Mars' Residual north polar cap , 1990 .

[59]  Robert M. Haberle,et al.  Sublimation and transport of water from the north residual polar cap on Mars , 1990 .

[60]  J. Salisbury,et al.  Spectral characterization of igneous rocks in the 8‐ to 12‐μm region , 1989 .

[61]  H. J. Melosh,et al.  Impact erosion of the primordial atmosphere of Mars , 1989, Nature.

[62]  Raymond E. Arvidson,et al.  Nature and origin of materials exposed in the Oxia Palus-Western Arabia-Sinus Meridiani region, Mars , 1988 .

[63]  P. Christensen Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion , 1988 .

[64]  S. Squyres,et al.  Origin and evolution of the layered deposits in the Valles Marineris, Mars , 1987 .

[65]  Raymond E. Arvidson,et al.  On The spectral reflectance properties of materials exposed at the Viking landing sites , 1987 .

[66]  John W. Salisbury,et al.  Mid-infrared (2.1-25 um) spectra of minerals; first edition , 1987 .

[67]  Paul E. Johnson,et al.  Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .

[68]  Terry Z. Martin,et al.  Thermal infrared opacity of the Mars atmosphere , 1986 .

[69]  B. Jakosky,et al.  Global duricrust on Mars: Analysis of remote‐sensing data , 1986 .

[70]  John W. Salisbury,et al.  The effect of particle size and porosity on spectral contrast in the mid-infrared , 1985 .

[71]  A. Ingersoll,et al.  Annual Heat Balance of Martian Polar Caps: Viking Observations , 1985, Science.

[72]  R. Kahn The evolution of CO2 on Mars , 1985 .

[73]  F. Palluconi,et al.  Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images , 1984 .

[74]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[75]  P. Thomas,et al.  Martian intracrater splotches: Occurrence, morphology, and colors , 1984 .

[76]  F. Fanale,et al.  Regolith-atmosphere exchange of water and carbon dioxide on Mars - Effects on atmospheric history and climate change , 1982 .

[77]  R. Clark,et al.  Mars: Near‐infrared spectral reflectance of surface regions and compositional implications , 1982 .

[78]  R. Singer Spectral evidence for the mineralogy of high‐albedo soils and dust on Mars , 1982 .

[79]  G. North,et al.  The seasonal CO2 cycle on Mars: An application of an energy balance climate model , 1982 .

[80]  B. Lucchitta Lakes or playas in Valles Marineris. , 1982 .

[81]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[82]  E. Miner,et al.  Time variability of Martian bolometric albedo , 1981 .

[83]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[84]  R. Hanel,et al.  Infrared spectrometer for Voyager. , 1980, Applied optics.

[85]  R. B. Singer The Dark Materials on Mars: I. New Information from Reflectance Spectroscopy on the Extent and Mode of Oxidation , 1980 .

[86]  Hugh H. Kieffer,et al.  Mars south polar spring and summer temperatures: A residual CO2 frost , 1979 .

[87]  Robert B. Singer,et al.  Mars surface composition from reflectance spectroscopy: A summary , 1979 .

[88]  H. Kieffer,et al.  Moderate resolution thermal mapping of Mars: the channel terrain around the Chryse basin. , 1979 .

[89]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[90]  H. Kieffer,et al.  Thermal mapping of the northern equatorial and temperate latitudes of Mars , 1979 .

[91]  R. F. Rice,et al.  Practical Universal Noiseless Coding , 1979, Optics & Photonics.

[92]  H. Kieffer,et al.  Thermal infrared properties of the Martian atmosphere: 1. Global behavior at 7, 9, 11, and 20 μm , 1979 .

[93]  Robert F. Rice,et al.  Some practical universal noiseless coding techniques , 1979 .

[94]  F. Palluconi,et al.  Viking infrared thermal mapper. , 1978, Applied optics.

[95]  H. Kieffer,et al.  Carbonate formation in Marslike environments , 1978 .

[96]  J. McCauley,et al.  Geologic map of the Coprates Quadrangle of Mars , 1978 .

[97]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[98]  D. W. Davies,et al.  Behavior of volatiles in Mars' polar areas: A model incorporating new experimental data , 1977 .

[99]  William C. Maguire,et al.  Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data , 1977 .

[100]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[101]  F. Palluconi,et al.  Infrared Thermal Mapping of the Martian Surface and Atmosphere: First Results , 1976, Science.

[102]  John W. Salisbury,et al.  Mid-Infrared Spectral Behavior of Metamorphic Rocks. , 1976 .

[103]  Barney J. Conrath,et al.  Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .

[104]  K. Herr,et al.  Evidence About Hydrate and Solid Water in the Martian Surface From the , 1974 .

[105]  V. Farmer The Infrared spectra of minerals , 1974 .

[106]  John C. Pearl,et al.  Mars: Mariner 9 Spectroscopic Evidence for H2O Ice Clouds , 1973, Science.

[107]  T. E. Burke,et al.  Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9. , 1973 .

[108]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[109]  R. Hanel,et al.  Mariner 9 michelson interferometer. , 1972, Applied optics.

[110]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[111]  G. Neugebauer,et al.  Mariner 1969 infrared radiometer results - Temperatures and thermal properties of the Martian surface , 1971 .

[112]  F. D. Clark,et al.  The Nimbus III Michelson Interferometer. , 1970, Applied optics.

[113]  James E. Conel,et al.  Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of Spectral emission from condensed particulate mediums , 1969 .

[114]  T B Comstock,et al.  U. S. Geological Survey , 1907, Radiocarbon.

[115]  E. Opik,et al.  The Martian Surface , 1966, Science.

[116]  Donald F. Hornig,et al.  Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra. , 1956 .