Contrasting downed woody debris dynamics in managed and unmanaged northern hardwood stands

The reported effects of selection silviculture on downed woody debris (DWD) vary. To investigate the proc- esses underlying potential management impacts on DWD stocks and fluxes, we conducted a repeated census of downed wood in selection-harvested, selectively harvested, and unmanaged (old-growth) stands in central Ontario. DWD was significantly more abundant in stands harvested within the last 20 years than in stands harvested earlier, and shifted towards more advanced decay classes over the first 20 years after harvest. These results are consistent with persistence of a harvest-related DWD pulse for up to two decades in managed stands. The transition of DWD from early and middle decay classes to more advanced decay classes proceeded more slowly in managed than unman- aged stands. Species type, identity of fungal fruiting bodies, presence of a cut surface, and plot moisture class were significant predictors of variation in decay dynamics within particular decay classes; however, these factors did not account for observed differences in decay-class transitions between managed and unmanaged stands. A decay class matrix model projected DWD half-lives of 19 years for unmanaged stands and 21 years for managed stands. Over the long term, slower decay dynamics may help somewhat in maintaining relatively high DWD abundances in stands managed under selection silviculture. Resume´ : Les resultats qui ont eterapportes concernant les effets du jardinage sur les debris ligneux au sol (DLS) varient. Dans le but d'etudier les processus sous-jacents aux impacts potentiels de l'amenagement sur les stocks et les flux de DLS, nous avons effectues des relevesr epetes des DLS dans des peuplements soumis aune coupe de jardinage, a une coupe d'ecremage ou non amenages (foret ancienne) dans le centre de l'Ontario. Les DLS etaient significativement plus abondants dans les peuplements recoltes au cours des 20 dernieres annees que dans les peuplements recoltes il y plus long- temps et ont evoluevers des classes de decomposition plus avancees au cours des premiers 20 ans apresl a recolte. Ces re´- sultats concordent avec la persistance d'une recrudescence des DLS relieeala recolte pendant une periode pouvant aller jusqu'adeux decennies dans les peuplements amenages. Le passage des DLS des classes de decomposition initiale et inter- mediaire vers une classe de decomposition plus avancee s'est fait plus lentement dans les peuplements amenages que dans les peuplements non amenages. Le type d'essences, l'identitedes carpophores, la presence d'une decoupe et la classe d'hu- miditede la placette etaient des indicateurs significatifs de la variation dans la dynamique de la decomposition dans une classe de decomposition donnee. Cependant, ces facteurs n'expliquaient pas les differences observees entre les peuple- ments amenages et non amenages dans la transition entre les classes de decomposition. Un modele matriciel des classes de decomposition predisait une demi-vie des DLS de 19 ans dans les peuplements non amenages et de 21 ans dans les peuplements amenages. Along terme, une dynamique de decomposition plus lente peut contribuer un peu amaintenir une abondance relativement elevee de DLS dans les peuplements amenages soumis au jardinage. (Traduit par la Redaction)

[1]  J. Hagan,et al.  Coarse Woody Debris , 1999 .

[2]  A. D’Amato,et al.  The influence of cutting cycle and stocking level on the structure and composition of managed old-growth northern hardwoods. , 2010 .

[3]  Mark C. Vanderwel,et al.  Long-term snag and downed woody debris dynamics under periodic surface fire, fire suppression, and shelterwood management , 2009 .

[4]  James A. Westfall,et al.  Measurement repeatability of a large-scale inventory of forest fuels , 2007 .

[5]  S. Fraver,et al.  Refining volume estimates of down woody debris , 2007 .

[6]  O. Holdenrieder,et al.  Wood-decaying fungi in the forest: conservation needs and management options , 2007, European Journal of Forest Research.

[7]  Sean C. Thomas,et al.  Soil CO2 efflux in uneven-aged managed forests: temporal patterns following harvest and effects of edaphic heterogeneity , 2006, Plant and Soil.

[8]  W. Keeton Managing for late-successional/old-growth characteristics in northern hardwood-conifer forests , 2006 .

[9]  Mark C. Vanderwel,et al.  Snag dynamics in partially harvested and unmanaged northern hardwood forests , 2006 .

[10]  Göran Ståhl,et al.  Coarse Woody Debris , 2006 .

[11]  Marilou Beaudet,et al.  Comparing composition and structure in old-growth and harvested (selection and diameter-limit cuts) northern hardwood stands in Quebec , 2005 .

[12]  Frédérik Doyon,et al.  Effects of strip and single-tree selection cutting on birds and their habitat in a southwestern Quebec northern hardwood forest , 2005 .

[13]  D. Bebber,et al.  Effects of retention harvests on structure of old-growth Pinus strobus L. stands in Ontario , 2005 .

[14]  L. Boddy,et al.  Inhibition and Stimulation Effects in Communities of Wood Decay Fungi: Exudates from Colonized Wood Influence Growth by Other Species , 2005, Microbial Ecology.

[15]  Brian J. Naylor,et al.  The effect of shelterwood harvesting and site preparation on eastern red-backed salamanders in white pine stands , 2004 .

[16]  T. Schuler Fifty years of partial harvesting in a mixed mesophytic forest: composition and productivity , 2004 .

[17]  C. Prescott,et al.  Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis , 2004 .

[18]  G. Parker,et al.  Coarse woody debris in managed central hardwood forests of Indiana, USA , 2004 .

[19]  J. Reid Experimental Design and Data Analysis for Biologists , 2003 .

[20]  J. Fryxell,et al.  Effects of selective logging on terrestrial small mammals and arthropods , 2003 .

[21]  S. Fraver,et al.  Dynamics of coarse woody debris following gap harvesting in the Acadian forest of central Maine, U.S.A. , 2002 .

[22]  T. Crow,et al.  Effects of Management on the Composition and Structure of Northern Hardwood Forests in Upper Michigan , 2002 .

[23]  R. D. Nyland,et al.  STRUCTURAL CHARACTERISTICS OF OLD‐GROWTH, MATURING, AND PARTIALLY CUT NORTHERN HARDWOOD FORESTS , 1999 .

[24]  X. Yin The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America , 1999, Oecologia.

[25]  Malcolm L. Hunter,et al.  Maintaining Biodiversity in Forest Ecosystems , 2000 .

[26]  D. Lindenmayer,et al.  Maintaining Biodiversity in Forest Ecosystems: Dying, dead, and down trees , 1999 .

[27]  R. D. Nyland Selection System in Northern Hardwoods , 1998 .

[28]  John M. Goodburn,et al.  Cavity trees and coarse woody debris in old-growth and managed northern hardwood forests in Wisconsin and Michigan , 1998 .

[29]  J. Pastor,et al.  Nitrogen content, decay rates, and decompositional dynamics of hollow versus solid hardwood logs in hardwood forests of Minnesota, U.S.A. , 1998 .

[30]  T. Niemelä,et al.  Interactions of fungi at late stages of wood decomposition. , 1995 .

[31]  P. Renvall Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland , 1995 .

[32]  T. Fahey,et al.  Dead bole mass and nutrients remaining 23 years after clear-felling of a northern hardwood forest , 1993 .

[33]  P. MacMillan Decomposition of coarse woody debris in an old-growth Indiana forest , 1988 .

[34]  Jerry F. Franklin,et al.  Tree Death as an Ecological Process , 1987 .

[35]  W. A. Patterson,et al.  Mass of downed wood in northern hardwood forests in New Hampshire: potential effects of forest management , 1986 .

[36]  M. Harmon,et al.  Ecology of Coarse Woody Debris in Temperate Ecosystems , 1986 .

[37]  J. W. Thomas,et al.  Wildlife habitats in managed forests--the Blue Mountains of Oregon and Washington , 1981 .

[38]  J. Cayford,et al.  Forest Regions of Canada , 1974 .