Evaluation Metrics for Unsupervised Learning Algorithms

Determining the quality of the results obtained by clustering techniques is a key issue in unsupervised machine learning. Many authors have discussed the desirable features of good clustering algorithms. However, Jon Kleinberg established an impossibility theorem for clustering. As a consequence, a wealth of studies have proposed techniques to evaluate the quality of clustering results depending on the characteristics of the clustering problem and the algorithmic technique employed to cluster data.

[1]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[2]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[3]  Charu C. Aggarwal,et al.  Data Clustering , 2013 .

[4]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[5]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[6]  Derek Greene,et al.  Unsupervised Learning and Clustering , 2008, Machine Learning Techniques for Multimedia.

[7]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Allen Kent,et al.  Machine literature searching X. Machine language; factors underlying its design and development , 1955 .

[9]  R. Sokal,et al.  THE COMPARISON OF DENDROGRAMS BY OBJECTIVE METHODS , 1962 .

[10]  Vladimir Estivill-Castro,et al.  Why so many clustering algorithms: a position paper , 2002, SKDD.

[11]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[12]  M. Emre Celebi,et al.  Unsupervised Learning Algorithms , 2016 .

[13]  Charu C. Aggarwal,et al.  Data Clustering: Algorithms and Applications , 2014 .

[14]  Jon M. Kleinberg,et al.  An Impossibility Theorem for Clustering , 2002, NIPS.

[15]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[16]  Lei Xu,et al.  Bayesian Ying-Yang machine, clustering and number of clusters , 1997, Pattern Recognit. Lett..

[17]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[18]  Charu C. Aggarwal,et al.  Data Mining: The Textbook , 2015 .

[19]  Geoffrey H. Ball,et al.  ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .

[20]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .