Definitions of Pseudocapacitive Materials: A Brief Review

[1]  B. Dunn,et al.  The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5 , 2012 .

[2]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[3]  Wako Naoi,et al.  Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices , 2012 .

[4]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[5]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[6]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[7]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[8]  Chao-lun Liang,et al.  Achieving Insertion‐Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance , 2018, Advanced materials.

[9]  Brian E. Conway,et al.  Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors Comparison with Ruthenium Oxide , 1998 .

[10]  Feiyu Kang,et al.  Nanostructured Anode Materials for Non‐aqueous Lithium Ion Hybrid Capacitors , 2018, Energy & Environmental Materials.

[11]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[12]  Yen‐Po Lin,et al.  Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor , 2008 .

[13]  Xiaofeng Fan,et al.  Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance , 2016, Nature Communications.

[14]  Wei Wang,et al.  Metallic Graphene‐Like VSe2 Ultrathin Nanosheets: Superior Potassium‐Ion Storage and Their Working Mechanism , 2018, Advanced materials.

[15]  Jinping Liu,et al.  Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects , 2017, Advanced science.

[16]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[17]  Jesse S. Ko,et al.  Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures , 2018, Electrochimica Acta.

[18]  H. Abruña,et al.  Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. , 2001, Chemical reviews.

[19]  Jiale Xie,et al.  Puzzles and confusions in supercapacitor and battery: Theory and solutions , 2018, Journal of Power Sources.

[20]  Hamid Gualous,et al.  Design and New Control of DC/DC Converters to Share Energy Between Supercapacitors and Batteries in Hybrid Vehicles , 2008, IEEE Transactions on Vehicular Technology.

[21]  Yexiang Tong,et al.  Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials , 2013, Nature Communications.

[22]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[23]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[24]  Yury Gogotsi,et al.  Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes , 2018, Nature.

[25]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[26]  B. Popov,et al.  Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method , 2002 .

[27]  Wendy G. Pell,et al.  Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes , 2004 .

[28]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[29]  B. Conway,et al.  Zinc Oxidation and Redeposition Processes in Aqueous Alkali and Carbonate Solutions II . Distinction Between Dissolution and Oxide Film Formation Processes , 1987 .

[30]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[31]  Juan Sun,et al.  Metal-Organic Framework Derived Spindle-like Carbon Incorporated α-Fe2O3 Grown on Carbon Nanotube Fiber as Anodes for High-Performance Wearable Asymmetric Supercapacitors. , 2018, ACS nano.

[32]  Yury Gogotsi,et al.  Energy Storage in Nanomaterials - Capacitive, Pseudocapacitive, or Battery-like? , 2018, ACS nano.

[33]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[34]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[35]  Z. Shen,et al.  Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. , 2016, ACS nano.

[36]  S. Donne,et al.  A step potential electrochemical spectroscopy (SPECS) investigation of anodically electrodeposited thin films of manganese dioxide , 2017 .

[37]  Chilin Li,et al.  Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films , 2014 .

[38]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[39]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[40]  Bin Wang,et al.  Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors , 2009 .