Noise and its effects on photoreceptor temporal contrast sensitivity at low light levels.

We studied photoreceptors in the locust (Schistocerca americanus) visual system to determine the extent to which quantal noise and intrinsic neural noise limit temporal sensitivity. Typical computational models of the temporal contrast sensitivity function are deterministic, reflect only filter characteristics, and lack explicit noise sources [J. Opt. Soc. Am. 58, 1133 (1968); Vision Res. 32, 1373 (1992)]. We report here that the temporal contrast sensitivity function, at low light levels, is not simply the reflection of a filter function. Our evidence suggests that, at low backgrounds, noise, in conjunction with temporal filtering, plays a role in shaping the temporal contrast sensitivity function. At a given low adaptation level, quantal noise limits sensitivity at low temporal frequencies, while intrinsic noise limits sensitivity at relatively higher temporal frequencies.

[1]  S B Laughlin,et al.  Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  Donald C. Hood,et al.  Modeling the dynamics of light adaptation: the merging of two traditions , 1992, Vision Research.

[3]  H. Barlow Retinal noise and absolute threshold. , 1956, Journal of the Optical Society of America.

[4]  T. Lamb,et al.  Amplification and kinetics of the activation steps in phototransduction. , 1993, Biochimica et biophysica acta.

[5]  C. Zuker,et al.  Signal transduction in Drosophila photoreceptors. , 1995, Annual review of neuroscience.

[6]  A. Hodgkin,et al.  Changes in time scale and sensitivity in the ommatidia of Limulus , 1964, The Journal of physiology.

[7]  Y. Koutalos,et al.  Regulation of sensitivity in vertebrate rod photoreceptors by calcium , 1996, Trends in Neurosciences.

[8]  D. Baylor,et al.  Two components of electrical dark noise in toad retinal rod outer segments. , 1980, The Journal of physiology.

[9]  W. G. Owen Ionic conductances in rod photoreceptors. , 1987, Annual review of physiology.

[10]  Theodore E. Cohn,et al.  Receiver operating characteristic analysis of photoreceptor sensitivity , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  C. Montell TRP trapped in fly signaling web , 1998, Current Opinion in Neurobiology.

[12]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[13]  H. D. L. Dzn,et al.  Experiments on flicker and some calculations on an electrical analogue of the foveal systems , 1952 .

[14]  D. Copenhagen,et al.  Ganglion cell performance at absolute threshold in toad retina: effects of dark events in rods. , 1987, The Journal of physiology.

[15]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[16]  F. Dodge,et al.  Voltage Noise in Limulus Visual Cells , 1968, Science.

[17]  W. W. Peterson,et al.  The theory of signal detectability , 1954, Trans. IRE Prof. Group Inf. Theory.

[18]  A. Watson,et al.  Gain, noise, and contrast sensitivity of linear visual neurons , 1990, Visual Neuroscience.

[19]  T.E. Cohn Receiver operating characteristic analysis of sensitivity in neural systems , 1977, Proceedings of the IEEE.

[20]  M. M. Taylor,et al.  PEST: Efficient Estimates on Probability Functions , 1967 .

[21]  D. H. Kelly Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. , 1961, Journal of the Optical Society of America.

[22]  H. Wilson,et al.  Human flicker sensitivity: two stages of retinal diffusion. , 1978, Science.

[23]  D. Tranchina,et al.  Retinal light adaptation—evidence for a feedback mechanism , 1984, Nature.

[24]  P. Detwiler,et al.  Patch‐clamp recordings of the light‐sensitive dark noise in retinal rods from the lizard and frog. , 1985, The Journal of physiology.

[25]  R. Barlow,et al.  On the molecular origin of photoreceptor noise , 1993, Nature.

[26]  N. Graham,et al.  Quantal noise and decision rules in dynamic models of light adaptation , 1992, Vision Research.

[27]  P. Lillywhite,et al.  Multiplicative intrinsic noise and the limits to visual performance , 1981, Vision Research.

[28]  J. Rovamo,et al.  Flicker Sensitivity as a Function of Spectral Density of External White Temporal Noise , 1996, Vision Research.

[29]  K. Yau,et al.  Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. , 1994, Investigative ophthalmology & visual science.

[30]  T E Cohn,et al.  Receiver operating characteristic analysis. Application to the study of quantum fluctuation effects in optic nerve of Rana pipiens , 1975, The Journal of general physiology.

[31]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[32]  K. Djupsund,et al.  Changes in retinal time scale under background light: Observations on rods and ganglion cells in the frog retina , 1995, Vision Research.

[33]  Simon B. Laughlin,et al.  Light Adaptation and Reliability in Blowfly Photoreceptors , 1996, Int. J. Neural Syst..

[34]  R. Shapley,et al.  Light adaptation in the primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells , 1990, Visual Neuroscience.

[35]  D. Baylor,et al.  How photons start vision. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Laughlin,et al.  Transducer noise in a photoreceptor , 1979, Nature.

[37]  H. D. L. Dzn Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. , 1958 .

[38]  D. H. Kelly,et al.  Primate flicker sensitivity: psychophysics and electrophysiology. , 1976, Science.

[39]  W. Bialek,et al.  Physical limits to sensation and perception. , 1987, Annual review of biophysics and biophysical chemistry.

[40]  B W Knight,et al.  Dispersion of latencies in photoreceptors of Limulus and the adapting- bump model , 1980, The Journal of general physiology.

[41]  M M Sondhi,et al.  Model for visual luminance discrimination and flicker detection. , 1968, Journal of the Optical Society of America.

[42]  W. G. Owen,et al.  Temporal filtering in retinal bipolar cells. Elements of an optimal computation? , 1990, Biophysical journal.

[43]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[44]  D H Kelly,et al.  Diffusion model of linear flicker responses. , 1969, Journal of the Optical Society of America.

[45]  Theodore E. Cohn,et al.  Quantum fluctuation limit in foveal vision , 1976, Vision Research.

[46]  H B Barlow,et al.  Performance of cat retinal ganglion cells at low light levels , 1983, The Journal of general physiology.

[47]  Paul R. Prucnal,et al.  Multiplication noise in the human visual system at threshold: 1. Quantum fluctuations and minimum detectable energy , 1982 .

[48]  J. Swets,et al.  A decision-making theory of visual detection. , 1954, Psychological review.

[49]  R. Hess,et al.  Spatial and temporal limits of vision in the achromat. , 1986, The Journal of physiology.

[50]  K. Donner,et al.  Modelling the spatio-temporal modulation response of ganglion cells with difference-of-Gaussians receptive fields: Relation to photoreceptor response kinetics , 1996, Visual Neuroscience.

[51]  A. Hodgkin,et al.  Reconstruction of the electrical responses of turtle cones to flashes and steps of light , 1974, The Journal of physiology.

[52]  C. Zuker,et al.  The biology of vision of Drosophila. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  L Matin,et al.  Critical duration, the differential luminance threshold, critical flicker frequency, and visual adaptation: a theoretical treatment. , 1968, Journal of the Optical Society of America.

[54]  D. H. Kelly Adaptation effects on spatio-temporal sine-wave thresholds. , 1972, Vision research.

[55]  K. Donner,et al.  Low retinal noise in animals with low body temperature allows high visual sensitivity , 1988, Nature.