Auto-Bäcklund Transformation, Similarity Reductions and Solitons of an Extended ($$2+1$$)-Dimensional Coupled Burgers System in Fluid Mechanics

[1]  Yi-Tian Gao,et al.  Lie group analysis for a higher-order Boussinesq-Burgers system , 2022, Appl. Math. Lett..

[2]  Yuan Shen,et al.  Shallow-water-wave studies on a (2 + 1)-dimensional Hirota–Satsuma–Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions , 2022, Chaos, Solitons & Fractals.

[3]  Wen-Rui Shan,et al.  Oceanic long-gravity-water-wave investigations on a variable-coefficient nonlinear dispersive-wave system , 2022, Waves in Random and Complex Media.

[4]  B. Tian,et al.  Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients , 2022, Nonlinear Dynamics.

[5]  Wen-Rui Shan,et al.  Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber , 2022, Chaos, Solitons & Fractals.

[6]  Cui-Cui Ding,et al.  Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves , 2022, Nonlinear Dynamics.

[7]  B. Tian,et al.  Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2$$+$$1)-dimensional generalized Burgers system with the variable coefficients in a fluid , 2022, Nonlinear Dynamics.

[8]  Wen-Rui Shan,et al.  Lax pair, solitons, breathers and modulation instability of a three-component coupled derivative nonlinear Schrödinger system for a plasma , 2022, The European Physical Journal Plus.

[9]  Bo Tian,et al.  Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system , 2021, Appl. Math. Lett..

[10]  B. Tian,et al.  Three-component coupled nonlinear Schrödinger system in a multimode optical fiber: Darboux transformation induced via a rank-two projection matrix , 2021, Commun. Nonlinear Sci. Numer. Simul..

[11]  Hui-Min Yin,et al.  Certain electromagnetic waves in a ferromagnetic film , 2021, Commun. Nonlinear Sci. Numer. Simul..

[12]  Yi-Tian Gao,et al.  Darboux transformation, bright and dark-bright solitons of an N-coupled high-order nonlinear Schrödinger system in an optical fiber , 2021, Modern Physics Letters B.

[13]  B. Tian,et al.  Bilinear auto-Bäcklund transformation, soliton and periodic-wave solutions for a (2+1)-dimensional generalized Kadomtsev–Petviashvili system in fluid mechanics and plasma physics , 2021, Chinese Journal of Physics.

[14]  Chunjuan Feng,et al.  Comment on “In oceanography, acoustics and hydrodynamics: An extended coupled (2+1)-dimensional Burgers system”[Chin. J. Phys. 70, 264 (2021)] , 2021, Chinese Journal of Physics.

[15]  B. Tian,et al.  Rogue and lump waves for the (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice , 2021, International Journal of Modern Physics B.

[16]  B. Tian,et al.  Bäcklund transformations, Lax pair and solutions of a Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves , 2021, Modern Physics Letters B.

[17]  Guangmei Wei,et al.  Lie symmetry analysis, optimal system and conservation law of a generalized (2+1)-dimensional Hirota–Satsuma–Ito equation , 2021, Modern Physics Letters B.

[18]  Wen-Rui Shan,et al.  Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber , 2021, Waves in Random and Complex Media.

[19]  B. Tian,et al.  Bilinear auto-Bäcklund transformation, breather-wave and periodic-wave solutions for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation , 2021, The European Physical Journal Plus.

[20]  Meng Wang,et al.  Darboux transformation, generalized Darboux transformation and vector breather solutions for a coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide , 2021, Waves in Random and Complex Media.

[21]  Yi-Tian Gao,et al.  Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics , 2021, Chaos, Solitons & Fractals.

[22]  Meng Wang,et al.  Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain , 2021, Chaos, Solitons & Fractals.

[23]  Yi-Tian Gao,et al.  Gramian solutions and solitonic interactions of a (2+1)-dimensional Broer–Kaup–Kupershmidt system for the shallow water , 2021, International Journal of Numerical Methods for Heat & Fluid Flow.

[24]  B. Tian,et al.  In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system , 2021, The European Physical Journal Plus.

[25]  B. Tian,et al.  Comment on “Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system” , 2021 .

[26]  Yi-Tian Gao,et al.  Three-wave resonant interactions: dark–bright–bright mixed N- and high-order solitons, breathers, and their structures , 2021, Waves in Random and Complex Media.

[27]  H. Rezazadeh,et al.  Analytical Traveling Wave and Soliton Solutions of the $$(2+1)$$ Dimensional Generalized Burgers–Huxley Equation , 2021, Qualitative Theory of Dynamical Systems.

[28]  Yongjiang Guo,et al.  Hetero-Bäcklund Transformation, Bilinear Forms and N Solitons for a Generalized Three-Coupled Korteweg-de Vries System , 2021, Qualitative Theory of Dynamical Systems.

[29]  Yi-Tian Gao,et al.  Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg–de Vries equation for the surface waves in a strait or large channel , 2021, Chinese Journal of Physics.

[30]  Yongjiang Guo,et al.  Symbolic computation on a (2+1)-dimensional generalized variable-coefficient Boiti–Leon–Pempinelli system for the water waves , 2021 .

[31]  Wen-Rui Shan,et al.  Bilinear form, bilinear auto-Bäcklund transformation, breather and lump solutions for a (3$$+$$1)-dimensional generalised Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid or a lattice , 2021, Pramana.

[32]  Yongjiang Guo,et al.  Looking at an open sea via a generalized $$(2+1)$$-dimensional dispersive long-wave system for the shallow water: scaling transformations, hetero-Bäcklund transformations, bilinear forms and N solitons , 2021, The European Physical Journal Plus.

[33]  B. Tian,et al.  Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg–de Vries equation in a fluid , 2021, Nonlinear Dynamics.

[34]  B. Tian,et al.  Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics , 2021 .

[35]  B. Tian,et al.  Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma , 2021, Chaos, Solitons & Fractals.

[36]  B. Tian,et al.  Bilinear Bäcklund transformation, breather- and travelling-wave solutions for a (2+1)-dimensional extended Kadomtsev–Petviashvili II equation in fluid mechanics , 2021 .

[37]  B. Tian,et al.  In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff system , 2021, The European Physical Journal Plus.

[38]  B. Tian,et al.  Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves , 2021, Appl. Math. Lett..

[39]  B. Chentouf Qualitative Analysis of the Dynamic for the Nonlinear Korteweg–de Vries Equation with a Boundary Memory , 2021, Qualitative Theory of Dynamical Systems.

[40]  B. Tian,et al.  Darboux dressing transformation and superregular breathers for a coupled nonlinear Schrödinger system with the negative coherent coupling in a weakly birefringent fibre , 2021, Int. J. Comput. Math..

[41]  A. Wazwaz,et al.  New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions , 2021, Nonlinear Dynamics.

[42]  Yi-Tian Gao,et al.  Higher-order hybrid waves for the (2 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique , 2021 .

[43]  B. Tian,et al.  Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation in a fluid , 2021 .

[44]  B. Tian,et al.  Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber , 2021 .

[45]  Yongjiang Guo,et al.  Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system , 2021, Appl. Math. Lett..

[46]  Tian Bo,et al.  Bilinear Form, Soliton, Breather, Hybrid and Periodic-Wave Solutions for a (3+1)-Dimensional Korteweg-De Vries Equation in a Fluid , 2021 .

[47]  Yi-Tian Gao,et al.  Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics , 2021 .

[48]  B. Tian,et al.  Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber , 2020, Appl. Math. Lett..

[49]  Wen-Rui Shan,et al.  Lax pair, Darboux transformation, breathers and rogue waves of an NNN -coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma , 2021 .

[50]  Yi-Tian Gao,et al.  Vector bright soliton interactions of the two-component AB system in a baroclinic fluid , 2020 .

[51]  Yongjiang Guo,et al.  In oceanography, acoustics and hydrodynamics: An extended coupled (2+1)-dimensional Burgers system , 2020 .

[52]  Yongjiang Guo,et al.  Scaling and hetero-/auto-Bäcklund transformations with solitons of an extended coupled (2+1)-dimensional Burgers system for the wave processes in hydrodynamics and acoustics , 2020 .

[53]  Yongjiang Guo,et al.  Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics , 2020 .

[54]  Wen-Rui Shan,et al.  Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq–Burgers system for the shallow water waves in a lake or near an ocean beach , 2020, Communications in Theoretical Physics.

[55]  A. R. Adem,et al.  Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations , 2020 .

[56]  Xin Yu,et al.  Unconventional characteristic line for the nonautonomous KP equation , 2020, Appl. Math. Lett..

[57]  Qi-Xing Qu,et al.  Lump, lumpoff, rogue wave, breather wave and periodic lump solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid mechanics and plasma physics , 2020, Int. J. Comput. Math..

[58]  Shuxin Han,et al.  Generalized Symmetries and mCK Method Analysis of the (2+1)-Dimensional Coupled Burgers Equations , 2019, Symmetry.

[59]  B. Tian,et al.  Lump, lumpoff and rogue waves for a (2 + 1)-dimensional reduced Yu-Toda-Sasa-Fukuyama equation in a lattice or liquid , 2019, The European Physical Journal Plus.

[60]  Yi-Tian Gao,et al.  Solitons for the (2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique , 2019, Modern Physics Letters B.

[61]  Bo Tian,et al.  Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave-stripe and dark rogue wave solutions of a generalized Kadomtsev–Petviashvili equation in fluid mechanics , 2019, Chinese Journal of Physics.

[62]  Guangmei Wei,et al.  Lax Pair, Improved Γ$\varGamma $-Riccati Bäcklund Transformation and Soliton-Like Solutions to Variable-Coefficient Higher-Order Nonlinear Schrödinger Equation in Optical Fibers , 2019, Acta Applicandae Mathematicae.

[63]  Guang-Mei Wei,et al.  Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation , 2018, Comput. Math. Appl..

[64]  E. Babolian,et al.  A localized Newton basis functions meshless method for the numerical solution of the 2D nonlinear coupled Burgers’ equations , 2017 .

[65]  Xin Yu,et al.  Transport of Nonautonomous Solitons in Two‐Dimensional Disordered Media , 2017 .

[66]  Zhi-Yuan Sun,et al.  Parabola solitons for the nonautonomous KP equation in fluids and plasmas , 2016 .

[67]  A. Kara,et al.  Soliton Solutions and Group Analysis of a New Coupled (2 + 1)-Dimensional Burgers Equations , 2015 .

[68]  Jin-Xi Fei,et al.  The residual symmetry of the (2+1)-dimensional coupled Burgers equation , 2014, Appl. Math. Lett..

[69]  M. El-Sayed,et al.  Symmetry group analysis and similarity solutions for the (2+1)‐dimensional coupled Burger's system , 2014 .

[70]  A. Biswas,et al.  TOPOLOGICAL SOLITONS AND CONSERVATION LAWS OF THE COUPLED BURGERS EQUATIONS , 2014 .

[71]  Vineet K. Srivastava,et al.  Numerical solutions of coupled Burgers’ equations by an implicit finite-difference scheme , 2013 .

[72]  Lei Ya,et al.  Finite symmetry transformation group and localized structures of the (2+1)-dimensional coupled Burgers equation , 2013 .

[73]  杨铎,et al.  Finite symmetry transformation group and localized structures of the (2+1)-dimensional coupled Burgers equation , 2013 .

[74]  A. A. Soliman,et al.  On completely integrable coupled Burgers and coupled Korteweg-de Vries systems , 2012, Appl. Math. Lett..

[75]  Gregor Kosec,et al.  Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations , 2012 .

[76]  Y. Liang,et al.  New variable separation solutions and nonlinear phenomena for the (2+1)-dimensional modified Korteweg–de Vries equation , 2011 .

[77]  A. Borhanifar,et al.  Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method , 2010, Comput. Math. Appl..

[78]  Siraj-ul-Islam,et al.  A Computational Meshfree Technique for the Numerical Solution of the Two-Dimensional Coupled Burgers' Equations , 2009 .

[79]  Abdul-Majid Wazwaz,et al.  Multiple kink solutions and multiple singular kink solutions for the (2 + 1)-dimensional Burgers equations , 2008, Appl. Math. Comput..

[80]  Satya N. Atluri,et al.  The Eulerian–Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations , 2008 .

[81]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers equation and the coupled Burgers equations , 2007, Appl. Math. Comput..

[82]  Hongqing Zhang,et al.  A new coupled sub-equations expansion method and novel complexiton solutions of (2+1)-dimensional Burgers equation , 2007, Appl. Math. Comput..

[83]  Zheng-Yi Ma,et al.  Multisoliton excitations for the Kadomtsev–Petviashvili equation and the coupled Burgers equation , 2007 .

[84]  Dogan Kaya,et al.  On the numerical solution of the system of two-dimensional Burgers' equations by the decomposition method , 2004, Appl. Math. Comput..

[85]  Hong-qing Zhang,et al.  New applications of a further extended tanh method , 2004 .

[86]  A. Cañada,et al.  Handbook of differential equations , 2004 .

[87]  A. Refik Bahadir,et al.  A fully implicit finite-difference scheme for two-dimensional Burgers' equations , 2003, Appl. Math. Comput..

[88]  R. Shankar,et al.  NUMERICAL SOLUTION OF COUPLED BURGERS EQUATIONS IN INHOMOGENEOUS FORM , 1995 .

[89]  Fred Wubs,et al.  An explicit-implicit method for a class of time-dependent partial differential equations , 1992 .

[90]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[91]  Clive A. J. Fletcher,et al.  Generating exact solutions of the two‐dimensional Burgers' equations , 1983 .