Silicon photonic add-drop filter for quantum emitters.

Integration of single-photon sources and detectors to silicon-based photonics opens the possibility of complex circuits for quantum information processing. In this work, we demonstrate integration of quantum dots with a silicon photonic add-drop filter for on-chip filtering and routing of telecom photons. A silicon microdisk resonator acts as a narrow filter that transfers the quantum dot emission and filters the background over a wide wavelength range. Moreover, by tuning the quantum dot emission wavelength over the resonance of the microdisk, we can control the transmission of the quantum dot emission to the drop and through channels of the add-drop filter. This result is a step toward the on-chip control of single photons using silicon photonics for applications in quantum information processing, such as linear optical quantum computation and boson sampling.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  Christopher V. Poulton,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2017 .

[3]  V. Zwiller,et al.  On-Chip Single-Photon Sifter , 2016, 1611.03245.

[4]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[5]  Kae Nemoto,et al.  Review article: Linear optical quantum computing , 2005, quant-ph/0512071.

[6]  Yasuhiko Arakawa,et al.  Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip , 2018, Physical Review Applied.

[7]  Andreas D. Wieck,et al.  Nanomechanical single-photon routing , 2018, Optica.

[8]  Y. Arakawa,et al.  Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities , 2016 .

[9]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[10]  D. Ritchie,et al.  Quantum photonics hybrid integration platform , 2015, 1507.00256.

[11]  Douglas B. Leviton,et al.  Temperature-dependent refractive index of silicon and germanium , 2006, SPIE Astronomical Telescopes + Instrumentation.

[12]  Andreas D. Wieck,et al.  Electro-optic routing of photons from a single quantum dot in photonic integrated circuits , 2017, 1707.06522.

[13]  Dan Dalacu,et al.  On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits , 2017, Nature Communications.

[14]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[15]  C. Richardson,et al.  Pathway to achieving circular InAs quantum dots directly on (100) InP and to tuning their emission wavelengths toward 1.55 μm , 2015 .

[16]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[17]  Dan Dalacu,et al.  Strain-Tunable Quantum Integrated Photonics , 2018, Nano letters.

[18]  John D. Siirola,et al.  Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[19]  Christopher J. K. Richardson,et al.  Two-photon interference from a bright single photon source at telecom wavelengths , 2015, 1511.05617.

[20]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[21]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[22]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[23]  Michael Siegel,et al.  Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor-Superconductor Platform. , 2018, Nano letters.

[24]  Christopher J. K. Richardson,et al.  Integration of quantum dots with lithium niobate photonics , 2018, Applied Physics Letters.

[25]  Dan Dalacu,et al.  Controlled integration of selected detectors and emitters in photonic integrated circuits. , 2019, Optics express.

[26]  Pierre Benech,et al.  Ultra-compact microdisk resonator filters on SOI substrate. , 2006, Optics express.

[27]  Dirk Englund,et al.  Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. , 2017, Nano letters.

[28]  D. A. Ritchie,et al.  Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit , 2018, 1803.04468.

[29]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[30]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[31]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[32]  Oliver Benson,et al.  On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform , 2018, New Journal of Physics.

[33]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[34]  Sae Woo Nam,et al.  Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices , 2016, Nature Communications.

[35]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[36]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[37]  Dan Dalacu,et al.  Deterministic Integration of Single Photon Sources in Silicon Based Photonic Circuits. , 2016, Nano letters.

[38]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[39]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.