The N-terminal domain of p53 is natively unfolded.

[1]  Stewart N Loh,et al.  Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. , 2003, Biochemistry.

[2]  P. Chène Inhibiting the p53–MDM2 interaction: an important target for cancer therapy , 2003, Nature Reviews Cancer.

[3]  A. Fersht,et al.  Molecular mechanism of the interaction between MDM2 and p53. , 2002, Journal of molecular biology.

[4]  Johannes Buchner,et al.  p53 contains large unstructured regions in its native state. , 2002, Journal of molecular biology.

[5]  P. Tompa Intrinsically unstructured proteins. , 2002, Trends in biochemical sciences.

[6]  T. Hupp,et al.  The Conformationally Flexible S9–S10 Linker Region in the Core Domain of p53 Contains a Novel MDM2 Binding Site Whose Mutation Increases Ubiquitination of p53 in Vivo * , 2002, The Journal of Biological Chemistry.

[7]  Vladimir N. Uversky,et al.  Amino acid determinants of α‐synuclein aggregation: putting together pieces of the puzzle , 2002 .

[8]  S. Hansen,et al.  Refolding and structural characterization of the human p53 tumor suppressor protein. , 2002, Biophysical chemistry.

[9]  H. Dyson,et al.  Coupling of folding and binding for unstructured proteins. , 2002, Current opinion in structural biology.

[10]  S. Gellman,et al.  A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction. , 2002, Analytical biochemistry.

[11]  K. Matthews,et al.  Human p53 phosphorylation mimic, S392E, increases nonspecific DNA affinity and thermal stability. , 2002, Biochemistry.

[12]  Vladimir N Uversky,et al.  What does it mean to be natively unfolded? , 2002, European journal of biochemistry.

[13]  C. Klein,et al.  NMR Spectroscopy Reveals the Solution Dimerization Interface of p53 Core Domains Bound to Their Consensus DNA* , 2001, The Journal of Biological Chemistry.

[14]  C. Prives,et al.  The C-terminus of p53: the more you learn the less you know , 2001, Nature Structural Biology.

[15]  Zoran Obradovic,et al.  The protein trinity—linking function and disorder , 2001, Nature Biotechnology.

[16]  R. Marmorstein,et al.  Crystal Structure of the Mouse p53 Core DNA-binding Domain at 2.7 Å Resolution* , 2001, The Journal of Biological Chemistry.

[17]  B. Mayer,et al.  SH3 domains: complexity in moderation. , 2001, Journal of cell science.

[18]  T. Davison,et al.  Structure and functionality of a designed p53 dimer. , 2001, Journal of molecular biology.

[19]  C. Renner,et al.  Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. , 2001, Biochemistry.

[20]  Zoran Obradovic,et al.  The Protein Non-Folding Problem: Amino Acid Determinants of Intrinsic Order and Disorder , 2000, Pacific Symposium on Biocomputing.

[21]  V. Uversky,et al.  Why are “natively unfolded” proteins unstructured under physiologic conditions? , 2000, Proteins.

[22]  J. García de la Torre,et al.  HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. , 2000, Journal of magnetic resonance.

[23]  Kyou-Hoon Han,et al.  Local Structural Elements in the Mostly Unstructured Transcriptional Activation Domain of Human p53* , 2000, The Journal of Biological Chemistry.

[24]  R. Copeland,et al.  Thermodynamics of p53 binding to hdm2(1-126): effects of phosphorylation and p53 peptide length. , 2000, Archives of biochemistry and biophysics.

[25]  David J. Weber,et al.  Structure of the negative regulatory domain of p53 bound to S100B(ββ) , 2000, Nature Structural Biology.

[26]  K. Sakaguchi,et al.  Damage-mediated Phosphorylation of Human p53 Threonine 18 through a Cascade Mediated by a Casein 1-like Kinase , 2000, The Journal of Biological Chemistry.

[27]  P. Huang,et al.  Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence. , 2000, Analytical biochemistry.

[28]  M. Sudol,et al.  The importance of being proline: the interaction of proline‐rich motifs in signaling proteins with their cognate domains , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  M. Uesugi,et al.  The α-helical FXXΦΦ motif in p53: TAF interaction and discrimination by MDM2 , 1999 .

[30]  P. May,et al.  Twenty years of p53 research: structural and functional aspects of the p53 protein , 1999, Oncogene.

[31]  C. Arrowsmith Structure and function in the p53 family , 1999, Cell Death and Differentiation.

[32]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[33]  M Bycroft,et al.  Hot-spot mutants of p53 core domain evince characteristic local structural changes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  L. Bracco,et al.  The requirement for the p53 proline‐rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression , 1998, The EMBO journal.

[35]  M. Grütter,et al.  Crystallization and structure solution of p53 (residues 326-356) by molecular replacement using an NMR model as template. , 1998, Acta crystallographica. Section D, Biological crystallography.

[36]  Geoffrey J. Barton,et al.  JPred : a consensus secondary structure prediction server , 1999 .

[37]  J. Momand,et al.  Solution conformation of an essential region of the p53 transactivation domain. , 1997, Folding & design.

[38]  G. Prendergast,et al.  The polyproline region of p53 is required to activate apoptosis but not growth arrest , 1997, Oncogene.

[39]  S F Howard,et al.  Molecular characterization of the hdm2-p53 interaction. , 1997, Journal of molecular biology.

[40]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[41]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[42]  C. García-echeverría,et al.  On the Interaction Between p53 and MDM2: Transfer NOE Study of a p53-Derived Peptide Ligated to MDM2 , 1997 .

[43]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[44]  Thomas E. Creighton,et al.  Protein structure : a practical approach , 1997 .

[45]  A. Levine,et al.  Identification of a novel p53 functional domain that is necessary for efficient growth suppression. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Lane,et al.  Identification of novel mdm2 binding peptides by phage display. , 1996, Oncogene.

[47]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[48]  N. Pavletich,et al.  Structure of the p53 Tumor Suppressor Bound to the Ankyrin and SH3 Domains of 53BP2 , 1996, Science.

[49]  P E Wright,et al.  Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Soussi,et al.  Structural aspects of the p53 protein in relation to gene evolution: a second look. , 1996, Journal of molecular biology.

[51]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[52]  C. Arrowsmith,et al.  New insights into p53 function from structural studies. , 1996, Oncogene.

[53]  Y. Sung,et al.  Transactivation Ability of p53 Transcriptional Activation Domain Is Directly Related to the Binding Affinity to TATA-binding Protein (*) , 1995, The Journal of Biological Chemistry.

[54]  S Neidle,et al.  An approach to protein homology modelling based on an ensemble of NMR structures: application to the Sox-5 HMG-box protein. , 1995, Protein engineering.

[55]  A. Levine,et al.  Human TAFII31 protein is a transcriptional coactivator of the p53 protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Triezenberg,et al.  Structure and function of transcriptional activation domains. , 1995, Current opinion in genetics & development.

[57]  G. Marius Clore,et al.  Refined solution structure of the oligomerization domain of the tumour suppressor p53 , 1995, Nature Structural Biology.

[58]  N. Pavletich,et al.  Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms , 1995, Science.

[59]  A M Gronenborn,et al.  Interhelical angles in the solution structure of the oligomerization domain of p53: correction , 1995, Science.

[60]  K. Dahlman-Wright,et al.  Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Tjian,et al.  p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. , 1995, Science.

[62]  C. Arrowsmith,et al.  Solution structure of the tetrameric minimum transforming domain of p53 , 1995, Nature Structural Biology.

[63]  D. Lane,et al.  Immunochemical analysis of the interaction of p53 with MDM2;--fine mapping of the MDM2 binding site on p53 using synthetic peptides. , 1994, Oncogene.

[64]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[65]  A. Levine,et al.  Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. , 1994, Genes & development.

[66]  M. Williamson,et al.  The structure and function of proline-rich regions in proteins. , 1994, The Biochemical journal.

[67]  J. E. Stenger,et al.  p53 domains: identification and characterization of two autonomous DNA-binding regions. , 1993, Genes & development.

[68]  C. Pabo,et al.  The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. , 1993, Genes & development.

[69]  X. Chen,et al.  A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. , 1993, Genes & development.

[70]  D. Lane,et al.  What the papers say: The p53‐mdm2 autoregulatory feedback loop: A paradigm for the regulation of growth control by p53? , 1993 .

[71]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[72]  A. Levine,et al.  Mapping of the p53 and mdm-2 interaction domains. , 1993, Molecular and cellular biology.

[73]  S. Fields,et al.  Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. , 1993, Oncogene.

[74]  B. Pontius Close encounters: why unstructured, polymeric domains can increase rates of specific macromolecular association. , 1993, Trends in biochemical sciences.

[75]  M. Sternberg,et al.  Left-handed polyproline II helices commonly occur in globular proteins. , 1993, Journal of molecular biology.

[76]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[77]  M. Remm,et al.  A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. , 1992, Oncogene.

[78]  D. Lane,et al.  p53, guardian of the genome , 1992, Nature.

[79]  J. Capone,et al.  Purification and characterization of the carboxyl-terminal transactivation domain of Vmw65 from herpes simplex virus type 1. , 1992, The Journal of biological chemistry.

[80]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[81]  K. Kinzler,et al.  Identification of p53 as a sequence-specific DNA-binding protein , 1991, Science.

[82]  S. Fields,et al.  Presence of a potent transcription activating sequence in the p53 protein. , 1990, Science.

[83]  G. Lozano,et al.  Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. , 1990, Science.

[84]  T. Soussi,et al.  Structural aspects of the p53 protein in relation to gene evolution. , 1990, Oncogene.

[85]  U. Brinkmann,et al.  High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. , 1989, Gene.

[86]  P. V. von Hippel,et al.  Calculation of protein extinction coefficients from amino acid sequence data. , 1989, Analytical biochemistry.

[87]  R. Jaenicke,et al.  [12]Refolding and association of oligomeric proteins , 1986 .

[88]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .