Nonlinear optical effects in epsilon-near-zero media

Efficient nonlinear optical interactions are essential for many applications in modern photonics. However, they typically require intense laser sources and long interaction lengths, requirements that often render nonlinear optics incompatible with new nanophotonic architectures in integrated optics and metasurface devices. Obtaining materials with stronger nonlinear properties is a crucial step towards applications that require lower powers and smaller footprints. Recently, a new class of materials with a vanishing permittivity, known as epsilon-near-zero (ENZ) materials, has been reported to exhibit unprecedented ultrafast nonlinear efficiencies within sub-wavelength propagation lengths. In this Review, we survey the work that has been performed on ENZ materials and the related near-zero-index materials, focusing on the observation of various nonlinear phenomena (such as intensity-dependent refraction, four-wave mixing and harmonic generation), the identification of unique field-enhancement mechanisms and the study of non-equilibrium dynamics. Degenerately doped semiconductors (such as tin-doped indium oxide and aluminium-doped zinc oxide) are particularly promising candidates for ENZ-enhanced nonlinear optical applications. We conclude by pointing towards possible future research directions, such as the search for ENZ materials with low optical losses and the elucidation of the mechanisms underlying nonlinear enhancements.Materials with vanishingly small dielectric permittivity, known as epsilon-near-zero materials, enable strong ultrafast optical nonlinear responses within a sub-wavelength propagation length. This Review surveys the various observations of nonlinear phenomena in this class of materials.

[1]  Y. Jun,et al.  Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon‐Near‐Zero Organic Thin Films , 2018 .

[2]  Elsa Garmire,et al.  Nonlinear optics in daily life. , 2013, Optics express.

[3]  S. Vangala,et al.  Plasmonic Enhancement of Epsilon-Near-Zero Modes , 2018 .

[4]  M. Vincenti,et al.  Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions. , 2017, Optics express.

[5]  Tae Young Kim,et al.  Dispersion Control of Excitonic Thin Films for Tailored Superabsorption in the Visible Region , 2017 .

[6]  Krystyna Kolwas,et al.  Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres , 2015, Plasmonics.

[7]  G. Wurtz,et al.  All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity [Invited] , 2018 .

[8]  A. Marini,et al.  All-optical modulation in wavelength-sized epsilon-near-zero media. , 2016, Optics letters.

[9]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[10]  L. Caspani,et al.  Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials , 2016, Scientific Reports.

[11]  Igal Brener,et al.  Theory of epsilon-near-zero modes in ultrathin films , 2015 .

[12]  Arrigo Calzolari,et al.  Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives , 2014 .

[13]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[14]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[15]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[16]  N. Zheludev,et al.  Ultraviolet and visible range plasmonics of a topological insulator , 2014 .

[17]  Wayne Dickson,et al.  Eliminating material constraints for nonlinearity with plasmonic metamaterials , 2015, Nature Communications.

[18]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[19]  Pernille Voss Larsen,et al.  Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials. , 2017 .

[20]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[21]  Richard D. Schaller,et al.  Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude , 2016, Nature Photonics.

[22]  R. Boyd,et al.  Measurement of the complex nonlinear optical response of a surface plasmon-polariton. , 2014, Optics letters.

[23]  Jan Kischkat,et al.  Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.

[24]  John B. Pendry,et al.  Photonic band-gap effects and magnetic activity in dielectric composites , 2002 .

[25]  Jon A Schuller,et al.  Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates , 2017, Nature Communications.

[26]  N. Engheta,et al.  Boosting optical nonlinearities in ε-near-zero plasmonic channels , 2012 .

[27]  E. Palange,et al.  Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity , 2010, 1002.3321.

[28]  L. D. Negro,et al.  Tunability of indium tin oxide materials for mid-infrared plasmonics applications , 2017 .

[29]  Jeremy Upham,et al.  Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material , 2018 .

[30]  Michael Scalora,et al.  Electric field enhancement in Énear-zero slabs under TM-polarized oblique incidence , 2012, 1212.1497.

[31]  Brian F. Donovan,et al.  Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. , 2015, Nature materials.

[32]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[33]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[34]  Tal Ellenbogen,et al.  Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays. , 2017, Physical review letters.

[35]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[36]  J. Parsons,et al.  Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths , 2013, Nature Photonics.

[37]  Andrea Alù,et al.  Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. , 2008, Physical review letters.

[38]  Michael Scalora,et al.  Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells , 2012, 1210.1637.

[39]  Kwang‐Hyon Kim Unity‐Order Nonlinear Optical Index Change in Epsilon‐Near‐Zero Composite Materials of Gain Media and Metal Nanoparticles , 2018 .

[40]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[41]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[42]  Hongtao Yuan,et al.  Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation , 2018 .

[43]  Ivan I. Kravchenko,et al.  Dynamic transmission control based on all-dielectric Huygens metasurfaces , 2018, Optica.

[44]  Toshihiko Baba,et al.  Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. , 2009, Optics letters.

[45]  A. Marini,et al.  Self-organization of frozen light in near-zero-index media with cubic nonlinearity , 2015, Scientific Reports.

[46]  Michael B. Sinclair,et al.  Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films , 2015, 1502.04142.

[47]  S. Vangala,et al.  Coupling of Epsilon-Near-Zero Mode to Gap Plasmon Mode for Flat-Top Wideband Perfect Light Absorption , 2018 .

[48]  P. Roussignol,et al.  Surface-mediated enhancement of optical phase conjugation in metal colloids. , 1985, Optics letters.

[49]  Alexandra Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[50]  M. A. Vincenti,et al.  Singularity-driven second- and third-harmonic generation at -near-zero crossing points , 2011 .

[51]  G. Wurtz,et al.  Optical nonlocalities and additional waves in epsilon-near-zero metamaterials , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[52]  Nader Engheta,et al.  Pursuing Near-Zero Response , 2013, Science.

[53]  E. V. Van Stryland,et al.  Enhancement Mechanism of Nonlinear Optical Response of Transparent Conductive Oxides at Epsilon-Near-Zero , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[54]  Elisa Spinozzi,et al.  Efficient second-harmonic generation in micrometer-thick slabs with indefinite permittivity , 2012 .

[55]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[56]  Shota Kita,et al.  On-chip zero-index metamaterials , 2015, Nature Photonics.

[57]  C Monat,et al.  Four-wave mixing in slow light engineered silicon photonic crystal waveguides. , 2010, Optics express.

[58]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[59]  G. Keeler,et al.  Gigahertz speed operation of epsilon-near-zero silicon photonic modulators , 2018 .

[60]  Y. Fainman,et al.  High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials. , 2016, Small.

[61]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[62]  L. Caspani,et al.  Giant nonlinear frequency shift in epsilon-near-zero aluminum zinc oxide thin films , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[63]  Z. Jacob,et al.  Switching Purcell effect with nonlinear epsilon-near-zero media , 2018, Applied Physics Letters.

[64]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[65]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[66]  L. Manna,et al.  Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement , 2018, ACS photonics.

[67]  Daryl I. Vulis,et al.  Direct Observation of Phase-Free Propagation in a Silicon Waveguide , 2017 .

[68]  Nader Engheta,et al.  Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials , 2007 .

[69]  Xiaodong Yang,et al.  Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[70]  Ali Adibi,et al.  Hot‐Electron‐Assisted Femtosecond All‐Optical Modulation in Plasmonics , 2018, Advanced materials.

[71]  Daryl I. Vulis,et al.  On-chip all-dielectric fabrication-tolerant zero-index metamaterials. , 2016, Optics express.

[72]  G. D’Aguanno,et al.  Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal. , 2014, Optics express.

[73]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[74]  Fan Zhang,et al.  Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator. , 2018, Optics express.

[75]  Elia Palange,et al.  Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero , 2011 .

[76]  T. Taliercio,et al.  Brewster "mode" in highly doped semiconductor layers: an all-optical technique to monitor doping concentration. , 2014, Optics express.

[77]  Jeremy B. Wright,et al.  Directional perfect absorption using deep subwavelength low-permittivity films , 2014, 1405.5569.

[78]  Seokho Yun,et al.  Low-loss impedance-matched optical metamaterials with zero-phase delay. , 2012, ACS nano.

[79]  Robert W. Boyd,et al.  Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited] , 2011 .

[80]  Evan L. Runnerstrom,et al.  Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms , 2017, Scientific Reports.

[81]  D. A. Kleinman,et al.  Infrared Properties of Hexagonal Silicon Carbide , 1959 .

[82]  A. Ciattoni,et al.  All-optical active plasmonic devices with memory and power-switching functionalities based onε-near-zero nonlinear metamaterials , 2011, 1101.2541.

[83]  L. Caspani,et al.  Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides , 2018, Optical Materials Express.

[84]  George I. Stegeman,et al.  Third order nonlinear integrated optics , 1988 .

[85]  Michael Scalora,et al.  Second-harmonic generation in longitudinal epsilon-near-zero materials , 2017 .

[86]  L. Caspani,et al.  Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials. , 2016, Physical review letters.

[87]  E. M. Vogel,et al.  Nonlinear optical phenomena in glass , 1991 .

[88]  Emmanouil E. Kriezis,et al.  Silicon-Photonic Electro-Optic Phase Modulators Integrating Transparent Conducting Oxides , 2018, IEEE Journal of Quantum Electronics.

[89]  Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets , 2011 .

[90]  Andrea Alù,et al.  Giant second-harmonic generation efficiency and ideal phase matching with a double Îμ-near-zero cross-slit metamaterial , 2014 .

[91]  M. Ferrera,et al.  Ultra-fast transient plasmonics using transparent conductive oxides , 2018 .

[92]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[93]  Igor I. Smolyaninov,et al.  Hyperbolic Metamaterials , 2018 .

[94]  Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation , 2016, Nature communications.

[95]  Q. Gong,et al.  Epsilon‐Near‐Zero Photonics: A New Platform for Integrated Devices , 2018 .

[96]  Alexander V. Kildishev,et al.  Role of epsilon-near-zero substrates in the optical response of plasmonic antennas , 2016 .

[97]  Zi Jing Wong,et al.  Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials , 2013, Science.

[98]  Guixin Li,et al.  Nonlinear photonic metasurfaces , 2017 .

[99]  Z. Jacob,et al.  High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. , 2012, Optics express.

[100]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[101]  A. Anopchenko,et al.  Atomic layer deposition of ultra-thin and smooth Al-doped ZnO for zero-index photonics , 2018 .

[102]  A. Kildishev,et al.  Dynamic Control of Nanocavities with Tunable Metal Oxides. , 2017, Nano letters.

[103]  N. Engheta,et al.  Photonic doping of epsilon-near-zero media , 2017, Science.

[104]  Robert W. Boyd,et al.  Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film , 1999 .

[105]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[106]  E. W. Stryland,et al.  High-sensitivity, single-beam n(2) measurements. , 1989, Optics letters.

[107]  V. Gopalan,et al.  Correlated metals as transparent conductors. , 2016, Nature materials.

[108]  James S. Harris,et al.  Epsilon-Near-Zero Si Slot-Waveguide Modulator , 2018, ACS Photonics.

[109]  M. Bahoura,et al.  Extreme tunability in aluminum doped Zinc Oxide plasmonic materials for near-infrared applications , 2014, Scientific Reports.

[110]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[111]  M Scalora,et al.  Nonlinear dynamics in low permittivity media: the impact of losses. , 2013, Optics express.

[112]  H. Petek,et al.  Excitation of two-photon photoemission where epsilon is near zero on Ag(111) , 2018, 1809.02101.

[113]  A. Urbas,et al.  Analysis of beam deflection measurements in the presence of linear absorption , 2017 .

[114]  John B Ketterson,et al.  Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum , 2016, Nature Communications.

[115]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[116]  R. Chang,et al.  Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range , 2017 .

[117]  H. Atwater,et al.  Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. , 2018, Nano letters.

[118]  Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity. , 2010, Optics letters.

[119]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[120]  Hendry. I. Elim,et al.  Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films , 2006, cond-mat/0604652.

[121]  A. Boltasseva,et al.  Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off , 2015 .

[122]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[123]  Xueqin Huang,et al.  Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. , 2011, Nature materials.

[124]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[125]  R. Boyd,et al.  Beyond the perturbative description of the nonlinear optical response of low-index materials. , 2017, Optics letters.

[126]  W. K. Burns,et al.  Reflected third harmonic generated by picosecond laser pulses , 1969 .

[127]  Manning,et al.  Nonlinear Optics for High-Speed Digital Information Processing. , 1999, Science.

[128]  B.-O. Johansson,et al.  Mechanisms of reactive sputtering of titanium nitride and titanium carbide II: Morphology and structure , 1983 .

[129]  Combining ε-Near-Zero Behavior and Stopped Light Energy Bands for Ultra-Low Reflection and Reduced Dispersion of Slow Light , 2017, Scientific Reports.

[130]  J. Hugonin,et al.  Berreman mode and epsilon near zero mode. , 2012, Optics express.

[131]  F. Wise,et al.  Highly nonlinear As-S-Se glasses for all-optical switching. , 2002, Optics letters.

[132]  Patrick J. Roney,et al.  Mid-infrared Optics Using Dielectrics with Refractive Indices Below Unity , 2018, Physical Review Applied.

[133]  N. Engheta,et al.  The rise of near-zero-index technologies , 2017, Science.

[134]  N. Engheta,et al.  Near-zero refractive index photonics , 2017, Nature Photonics.

[135]  Matthew Reichert,et al.  Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction. , 2013, Optics letters.

[136]  George T. Wang,et al.  Giant field enhancement in longitudinal epsilon-near-zero films , 2017, 1701.08870.

[137]  R. Fleury,et al.  Enhanced superradiance in epsilon-near-zero plasmonic channels , 2013, 1303.3510.

[138]  H. Hosono,et al.  Exploiting ITO colloidal nanocrystals for ultrafast pulse generation , 2017, 1701.07586.

[139]  Luca Dal Negro,et al.  Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. , 2015, Optics letters.

[140]  Robert W Boyd,et al.  Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals. , 2004, Physical review letters.

[141]  Masayuki Yamane,et al.  Third‐order nonlinear optical susceptibilities of electroconductive oxide thin films , 1991 .

[142]  N. Engheta,et al.  Zero-Index Platforms: Where Light Defies Geometry , 2016 .

[143]  R. Boyd,et al.  Optical response of dipole antennas on an epsilon-near-zero substrate , 2016 .

[144]  Dynamic transmission control based on all-dielectric Huygens metasurfaces , 2018, Optica.

[145]  Daryl I. Vulis,et al.  Monolithic CMOS-compatible zero-index metamaterials. , 2016, Optics express.

[146]  E. Narimanov,et al.  Hyperbolic metamaterials , 2013, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[147]  Ray T. Chen,et al.  Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume. , 2018, Nano letters.

[148]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[149]  Ali Adibi,et al.  Ultrafast Control of Phase and Polarization of Light Expedited by Hot-Electron Transfer. , 2018, Nano letters.

[150]  M. A. Vincenti,et al.  Harmonic Generation in Multiresonant Plasma Films , 2013 .

[151]  M. Stockman,et al.  Real and Imaginary Properties of Epsilon-Near-Zero Materials. , 2016, Physical review letters.

[152]  Yu Wang,et al.  Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range , 2015 .

[153]  Nonlinear Control of Tunneling Through an Epsilon-Near-Zero Channel , 2009, 0901.4601.

[154]  P. Corkum,et al.  Petahertz optical oscilloscope , 2013, Nature Photonics.

[155]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[156]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[157]  C. Angelis,et al.  Harmonic generation from metal-oxide and metal-metal boundaries , 2018, Physical Review A.

[158]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[159]  E. Narimanov,et al.  Quest for organic plasmonics , 2013 .

[160]  R. Boyd,et al.  Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures. , 1999, Optics letters.

[161]  Michael B. Sinclair,et al.  Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber , 2017, Nature Photonics.

[162]  Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. , 2009 .

[163]  Junghyun Park,et al.  Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties , 2014 .

[164]  Filippo Capolino,et al.  Composite material made of plasmonic nanoshells with quantum dot cores: loss-compensation and ε-near-zero physical properties. , 2012, Nanotechnology.

[165]  Guangyuan Li,et al.  Doubly Enhanced Second Harmonic Generation through Structural and Epsilon-near-Zero Resonances in TiN Nanostructures , 2018 .

[166]  V. Shalaev,et al.  Optical time reversal from time-dependent Epsilon-Near-Zero media , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[167]  Long Tao,et al.  Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness , 2018 .

[168]  S. Maier,et al.  Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications. , 2017, ACS applied materials & interfaces.

[169]  Mohamed A. Swillam,et al.  High-speed hybrid plasmonic electro-optical absorption modulator exploiting epsilon-near-zero effect in indium-tin-oxide , 2018, Journal of Nanophotonics.

[170]  C. Angelis,et al.  Surface-plasmon excitation of second-harmonic light: emission and absorption , 2017, 1702.01300.

[171]  Shian Zhang,et al.  A Solution‐Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon‐Near‐Zero Medium , 2017, Advanced materials.

[172]  P. Berini Long-range surface plasmon polaritons , 2009 .

[173]  Steve Madden,et al.  Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides , 2012 .

[174]  Zubin Jacob,et al.  Ferrell–Berreman Modes in Plasmonic Epsilon-near-Zero Media , 2015, 1505.06180.

[175]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[176]  Spontaneous Photon Production in Time-Dependent Epsilon-Near-Zero Materials. , 2017, Physical review letters.

[177]  Daryl I. Vulis,et al.  Manipulating the flow of light using Dirac-cone zero-index metamaterials , 2018, Reports on progress in physics. Physical Society.

[178]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[179]  A. Fischer,et al.  Optical properties of metal-dielectric based epsilon near zero metamaterials , 2012 .