Characterizations of symmetrically partial Boolean functions with exact quantum query complexity

An {\it exact} quantum algorithm requires its output to be correct certainly, and this kind of algorithms has been studied mostly in the query model since the discoveries of Deutsch-Jozsa algorithm and the solution of Simon's problem. In this article, we prove the optimal exact quantum query complexity for a generalized Deutsch-Jozsa problem and characterize the symmetrically partial Boolean functions in terms of exact quantum query complexity. More specifically, (1) we give an optimal exact quantum query algorithm with complexity $k+1$ for computing the symmetrically partial Boolean function $DJ_n^k$ defined as: $DJ_n^k(x)=1$ for $|x|=n/2$, $DJ_n^k(x)=0$ for $|x|$ in the set $\{0, 1,\ldots, k, n-k, n-k+1,\ldots,n\}$, and it is undefined for the rest cases, where $n$ is even, $|x|$ is the Hamming weight of $x$. The case of $k=0$ is the well-known Deutsch-Jozsa problem. (2) We prove that any symmetrically partial Boolean function $f$ has exact quantum 1-query complexity if and only if $f$ can be computed by the Deutsch-Jozsa algorithm. (3) We also discover the optimal exact quantum 2-query complexity for solving a variant of the Deutsch-Jozsa problem, i.e. distinguishing between inputs of Hamming weight $\{ \lfloor n/2\rfloor, \lceil n/2\rceil \}$ and Hamming weight in the set $\{ 0, n\}$ for all odd $n$. We further discuss the optimal exact quantum algorithms for distinguishing between inputs of two different Hamming weights $k$ and $l$. (4) We provide an algorithm to determine the degree of any symmetrically partial Boolean function.

[1]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Alina Dubrovska Vasilieva,et al.  Computing Boolean Functions: Exact Quantum Query Algorithms and Low Degree Polynomials , 2006 .

[3]  Sebastian Dörn Quantum Algorithms for Algebraic Problems ∗ , 2008 .

[4]  Thomas Thierauf,et al.  The Quantum Query Complexity of Algebraic Properties , 2007, FCT.

[5]  Joachim von zur Gathen,et al.  Polynomials with two values , 1997, Comb..

[6]  Andris Ambainis,et al.  The Need for Structure in Quantum Speedups , 2009, Theory Comput..

[7]  Ben Reichardt,et al.  Span-Program-Based Quantum Algorithm for Evaluating Formulas , 2012, Theory Comput..

[8]  Robert Spalek,et al.  Lower Bounds on Quantum Query Complexity , 2005, Bull. EATCS.

[9]  Andris Ambainis,et al.  Exact quantum query complexity of EXACT and THRESHOLD , 2013, TQC.

[10]  Shenggen Zheng,et al.  Potential of Quantum Finite Automata with Exact Acceptance , 2014, Int. J. Found. Comput. Sci..

[11]  Andris Ambainis,et al.  A Note on Quantum Black-Box Complexity of Almost all Boolean Functions , 1998, Inf. Process. Lett..

[12]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  EvenShimon,et al.  The complexity of promise problems with applications to public-key cryptography , 1984 .

[15]  Yacov Yacobi,et al.  The Complexity of Promise Problems with Applications to Public-Key Cryptography , 1984, Inf. Control..

[16]  Andris Ambainis,et al.  Exact quantum algorithms have advantage for almost all Boolean functions , 2014, Quantum Inf. Comput..

[17]  Shenggen Zheng,et al.  Generalizations of the distributed Deutsch–Jozsa promise problem , 2014, Mathematical Structures in Computer Science.

[18]  Andris Ambainis,et al.  Forrelation: A Problem That Optimally Separates Quantum from Classical Computing , 2018, SIAM J. Comput..

[19]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[20]  Dong Pyo Chi,et al.  Quantum Algorithm for Generalized Deutsch-Jozsa Problem , 2008 .

[21]  K. Kim,et al.  Deutsch-Jozsa algorithm as a test of quantum computation , 1998, quant-ph/9807012.

[22]  Rusins Freivalds,et al.  Quantum Queries on Permutations , 2015, DCFS.

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  Andris Ambainis,et al.  Polynomials, Quantum Query Complexity, and Grothendieck's Inequality , 2015, CCC.

[25]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[26]  Andris Ambainis,et al.  Superlinear advantage for exact quantum algorithms , 2012, STOC '13.

[28]  Andrew Forbes,et al.  Quantum computation with classical light: Implementation of the Deutsch–Jozsa algorithm , 2016 .

[29]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[30]  Ashley Montanaro,et al.  On Exact Quantum Query Complexity , 2011, Algorithmica.

[31]  Harry Buhrman,et al.  Round Elimination in Exact Communication Complexity , 2015, TQC.

[32]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[33]  Frédéric Magniez,et al.  Quantum algorithms for element distinctness , 2000, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[34]  Mehdi Mhalla,et al.  Quantum Query Complexity of Some Graph Problems , 2004, SIAM J. Comput..

[35]  Oded Goldreich,et al.  On Promise Problems: A Survey , 2006, Essays in Memory of Shimon Even.

[36]  Scott Aaronson,et al.  Separations in query complexity using cheat sheets , 2015, Electron. Colloquium Comput. Complex..

[37]  Yuichi Yoshida,et al.  Partially Symmetric Functions Are Efficiently Isomorphism-Testable , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[38]  Debajyoti Bera A different Deutsch–Jozsa , 2015, Quantum Inf. Process..

[39]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[40]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[41]  Gatis Midrijanis Exact quantum query complexity for total Boolean functions , 2004, quant-ph/0403168.

[42]  Shenggen Zheng,et al.  From Quantum Query Complexity to State Complexity , 2014, Computing with New Resources.

[43]  Anne Canteaut,et al.  Symmetric Boolean functions , 2005, IEEE Transactions on Information Theory.

[44]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[45]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[46]  Aleksandrs Belovs,et al.  Span programs for functions with constant-sized 1-certificates: extended abstract , 2011, STOC '12.

[47]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[48]  Thomas P. Hayes,et al.  The Quantum Black-Box Complexity of Majority , 2002, Algorithmica.

[49]  Andris Ambainis,et al.  Separations in Query Complexity Based on Pointer Functions , 2017, J. ACM.

[50]  Michael E. Saks,et al.  Quantum query complexity and semi-definite programming , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[51]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[52]  Andris Ambainis,et al.  Superiority of exact quantum automata for promise problems , 2011, Inf. Process. Lett..

[53]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.