Propositionalization of Relational Data

Relational learning addresses the task of learning models or patterns from relational data. Complementary to relational learning approaches that learn directly from relational data, developed in the Inductive Logic Programming research community, this chapter addresses the propositionalization approach of first transforming a relational database into a single-table representation, followed by a model or pattern construction step using a standard machine learning algorithm.

[1]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[2]  Peter A. Flach,et al.  Propositionalization approaches to relational data mining , 2001 .

[3]  Peter A. Flach,et al.  An extended transformation approach to inductive logic programming , 2001, ACM Trans. Comput. Log..

[4]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[5]  Lovekesh Vig,et al.  Large-Scale Assessment of Deep Relational Machines , 2018, ILP.

[6]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[7]  Stefan Kramer,et al.  Stochastic Propositionalization of Non-determinate Background Knowledge , 1998, ILP.

[8]  Nicolas Lachiche,et al.  CARAF: Complex Aggregates within Random Forests , 2015, ILP.

[9]  Peter A. Flach,et al.  Comparative Evaluation of Approaches to Propositionalization , 2003, ILP.

[10]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[11]  Arno J. Knobbe Proceedings of the 2005 conference on Multi-Relational Data Mining , 2005 .

[12]  Nicolas Lachiche,et al.  Flexible propositionalization of continuous attributes in relational data mining , 2015, Expert Syst. Appl..

[13]  Wannes Meert,et al.  Learning Relational Representations with Auto-encoding Logic Programs , 2019, IJCAI.

[14]  Nada Lavrac,et al.  Wordification: Propositionalization by unfolding relational data into bags of words , 2015, Expert Syst. Appl..

[15]  Nada Lavrac,et al.  Propositionalization and embeddings: two sides of the same coin , 2020, Machine Learning.

[16]  Ondrej Kuzelka,et al.  Block-wise construction of tree-like relational features with monotone reducibility and redundancy , 2011, Machine Learning.

[17]  Peter A. Flach,et al.  IBC: A First-Order Bayesian Classifier , 1999, ILP.

[18]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[19]  Nada Lavrac,et al.  A Wordification Approach to Relational Data Mining , 2013, Discovery Science.

[20]  Lovekesh Vig,et al.  Logical Explanations for Deep Relational Machines Using Relevance Information , 2018, J. Mach. Learn. Res..

[21]  Stefan Wrobel,et al.  Transformation-Based Learning Using Multirelational Aggregation , 2001, ILP.

[22]  Ivan Bratko,et al.  Prolog Programming for Artificial Intelligence , 1986 .

[23]  Peter A. Flach,et al.  Confirmation-Guided Discovery of First-Order Rules with Tertius , 2004, Machine Learning.

[24]  Saso Dzeroski,et al.  Learning Nonrecursive Definitions of Relations with LINUS , 1991, EWSL.

[25]  Andrew McCallum,et al.  Introduction to Statistical Relational Learning , 2007 .

[26]  Peter A. Flach,et al.  1BC2: A True First-Order Bayesian Classifier , 2002, ILP.

[27]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[28]  Huma Lodhi,et al.  Deep Relational Machines , 2013, ICONIP.

[29]  Nada Lavrac,et al.  Propositionalization-based relational subgroup discovery with RSD , 2006, Machine Learning.

[30]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[31]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..