Empirical evaluation of dissimilarity measures for color and texture

This paper empirically compares nine image dissimilarity measures that are based on distributions of color and texture features summarizing over 1,000 CPU hours of computational experiments. Ground truth is collected via a novel random sampling scheme for color and via an image partitioning method for texture. Quantitative performance evaluations are given for classification, image retrieval, and segmentation tasks, and for a wide variety of dissimilarity measures. It is demonstrated how the selection of a measure, based on large scale evaluation, substantially improves the quality of classification, retrieval, and unsupervised segmentation of color and texture images.

[1]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[2]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[3]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[4]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[5]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[8]  D. Ennis Toward a Universal Law of Generalization , 1988, Science.

[9]  Tomaso Poggio,et al.  Computing texture boundaries from images , 1988, Nature.

[10]  Nasser M. Nasrabadi,et al.  Image coding using vector quantization: a review , 1988, IEEE Trans. Commun..

[11]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[12]  Michael Spann,et al.  Texture feature performance for image segmentation , 1990, Pattern Recognit..

[13]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[15]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[16]  Jian Fan,et al.  Texture Classification by Wavelet Packet Signatures , 1993, MVA.

[17]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[18]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[19]  William E. Higgins,et al.  Texture Segmentation using 2-D Gabor Elementary Functions , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Bidyut Baran Chaudhuri,et al.  Texture Segmentation Using Fractal Dimension , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[22]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Charles A. Poynton,et al.  A technical introduction to digital video , 1996 .

[24]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[26]  Hayit Greenspan,et al.  Finding Pictures of Objects in Large Collections of Images , 1996, Object Representation in Computer Vision.

[27]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[28]  Amarnath Gupta,et al.  Virage image search engine: an open framework for image management , 1996, Electronic Imaging.

[29]  Bedrich J. Hosticka,et al.  A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms , 1996, Pattern Recognit..

[30]  Joachim M. Buhmann,et al.  Non-parametric similarity measures for unsupervised texture segmentation and image retrieval , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Kenneth L. Clarkson,et al.  Nearest Neighbor Queries in Metric Spaces , 1997, STOC '97.

[32]  Joachim M. Buhmann,et al.  Unsupervised Texture Segmentation in a Deterministic Annealing Framework , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[34]  Joachim M. Buhmann,et al.  Histogram clustering for unsupervised image segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[35]  Carlo Tomasi,et al.  Color edge detection with the compass operator , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[36]  Jitendra Malik,et al.  Textons, contours and regions: cue integration in image segmentation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[37]  Emanuele Trucco,et al.  Robust motion and correspondence of noisy 3-D point sets with missing data , 1999, Pattern Recognit. Lett..

[38]  Joachim M. Buhmann,et al.  Histogram clustering for unsupervised segmentation and image retrieval , 1999, Pattern Recognit. Lett..