Use of Time-Series NDWI to Monitor Emerging Archaeological Sites: Case Studies from Iraqi Artificial Reservoirs
暂无分享,去创建一个
Over the last 50 years, countries across North Africa and the Middle East have seen a significant increase in dam construction which, notwithstanding their benefits, have endangered archaeological heritage. Archaeological surveys and salvage excavations have been carried out in threatened areas in the past, but the formation of reservoirs often resulted in the permanent loss of archaeological data. However, in 2018, a sharp fall in the water level of the Mosul Dam reservoir led to the emersion of the archaeological site of Kemune and allowed for its brief and targeted investigation. Reservoir water level change is not unique to the Mosul Dam, but it is a phenomenon affecting most of the artificial lakes of present-day Iraq. However, to know in advance which sites will be exposed due to a decrease in water level can be a challenging task, especially without any previous knowledge, field investigation, or high-resolution satellite image. Nonetheless, by using time-series medium-resolution satellite images, combined to obtain spectral indexes for different years, it is possible to monitor “patterns” of emerging archaeological sites from three major Iraqi reservoirs: Mosul, Haditha and Hamrin lake. The Normalised Difference Water Index (NDWI), generated from annual composites of Landsat and Sentinel-2 images, allow us to distinguish between water bodies and other land surfaces. When coupled with a pixel analysis of each image, the index can provide a mean for highlighting whether an archaeological site is submerged or not. Moreover, using a zonal histogram algorithm in QGIS over polygon shapefiles that represent a site surface, it is possible to assess the area of a site that has been exposed over time. The same analyses were carried out on monthly composites for the year 2018, to assess the impact of monthly variation of the water level on the archaeological sites. The results from both analyses have been visually evaluated using medium-resolution true colour images for specific years and locations and with 3 m resolution Planetscope images for 2018. Understanding emersion “patterns” of known archaeological sites provides a useful tool for targeted rescue excavation, while also expanding the knowledge of the post-flooding impact on cultural heritage in the regions under study.
[1] J. Ur,et al. The Hydraulic Landscape of Nimrud , 2015 .
[2] E. Hammer,et al. The Tigris-Euphrates Archaeological Reconnaissance Project: Final Report of the Cizre Dam and Cizre-Silopi Plain Survey Areas , 2012 .
[3] Richard P. Jennings,et al. Endangered Archaeology in the Middle East and North Africa: Introducing the EAMENA Project , 2016 .
[4] M. Allen,et al. Recognition of ancient channels and archaeological sites in the Mesopotamian floodplain using satellite imagery and digital topography. , 2020 .