Curvelet-based seismic data processing : A multiscale and nonlinear approach

Mitigating missing data, multiples, and erroneous migration amplitudes are key factors that determine image quality. Curvelets, little “plane waves,” complete with oscillations in one direction and smoothness in the other directions, sparsify a property we leverage explicitly with sparsity promotion. With this principle, we recover seismic data with high fidelity from a small subset (20%) of randomly selected traces. Similarly, sparsity leads to a natural decorrelation and hence to a robust curvelet-domain primary-multiple separation for North Sea data. Finally, sparsity helps to recover migration amplitudes from noisy data. With these examples, we show that exploiting the curvelet's ability to sparsify wavefrontlike features is powerful, and our results are a clear indication of the broad applicability of this transform to exploration seismology.

[1]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[2]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[3]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[4]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[5]  Felix J. Herrmann,et al.  Application of Stable Signal Recovery to Seismic Data Interpolation , 2006 .

[6]  M. Sacchi,et al.  Least‐squares wave‐equation migration for AVP/AVA inversion , 2003 .

[7]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[8]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[9]  F. Herrmann,et al.  Compressed wavefield extrapolation , 2007 .

[10]  Robert G. Fuller,et al.  Numerical Computations in US Undergraduate Physics Courses , 2006, Computing in Science & Engineering.

[11]  Felix J. Herrmann Surface related multiple prediction from incomplete data , 2007 .

[12]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[13]  F. Herrmann,et al.  Non-linear primary-multiple separation with directional curvelet frames , 2007 .

[14]  Gijs C. Fehmers,et al.  Fast structural interpretation with structure-oriented filtering , 2002 .

[15]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[16]  D. J. Verschuur,et al.  Estimation of multiple scattering by iterative inversion; Part II, Practical aspects and examples , 1997 .

[17]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[18]  A. Guitton Amplitude and kinematic corrections of migrated images for nonunitary imaging operators , 2004 .

[19]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[20]  Samuel H. Gray,et al.  Can we image beneath salt , 1996 .

[21]  D. J. Verschuur,et al.  Focal transformation, an imaging concept for signal restoration and noise removal , 2006 .

[22]  Felix J. Herrmann,et al.  Random sampling: New insights into the reconstruction of coarsely sampled wavefields , 2007 .

[23]  Felix J. Herrmann,et al.  Irregular sampling: from aliasing to noise , 2007 .

[24]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[25]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..