Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images

ObjectiveThe aim of this study was to evaluate the reproducibility of anatomical landmarks and the accuracy of different cone-beam CTs (CBCTs/DVTs) and a multislice spiral CT (MSCT) scanner.MethodsA human, fresh-frozen cadaver head was scanned with four CBCTs (Accuitomo 3D, 3D eXam, Pax Reve 3D, Pax Zenith 3D) and one MSCT (SOMATOM Sensation 64) scanner. The three-dimensional (3D) reconstruction of the volume data sets and location of the anthropometric landmarks (n=11), together with linear (n=5) and angular (n=1) measurements were carried out by three examiners using the program VoXim® 6.1. The measurements were taken twice at a 14-day interval. Descriptive analyses were made and the standard deviations were used to compare differences in the accuracy of landmark identification.ResultsThe descriptive statistics showed distinct differences in the reference points in the three axes of the coordinate system. Because of anatomical and morphological factors, the pogonion and gnathion reference points displayed higher standard deviations when set on the transverse plane (SDCBCT Pog: 0.66–1.57 mm; SDMSCT Pog: 0.14–1.09 mm; SDCBCT Gn: 1.05–1.77 mm; SDMSCT Gn: 0.20–0.85 mm), thus showing less accuracy. However, standard deviations on the sagittal and vertical planes were smaller. Genion, anterior nasal spine and infradentale had very low standard deviations on all three planes. The distance (Mfl-Mfr) and angle (Krl-Krr-Ge) revealed significantly smaller standard deviations in the MSCT (SDCBCT Krl-Krr-Ge: 0.51–0.75 mm; SDMSCT Krl-Krr-Ge: 0.22 mm).ConclusionThe CBCT devices evaluated in this study are suitable for taking exact 3D measurements of anatomical structures and meet all requirements for 3D cephalometric analysis.ZusammenfassungHintergrundZiel dieser Studie war der Vergleich der Reproduzierbarkeit anatomischer Messpunkte und somit auch der Genauigkeit verschiedener dentaler Volumentomographen (DVT) und eines Mehrschicht-Spiral-Computertomographen (MSCT).Material und MethodikVon einem gefrorenem Leichenkopf wurden mit vier DVT-Geräten (Accuitomo 3D, 3D eXam, Pax Reve 3D, Pax Zenith 3D) und einem MSCT (SOMATOM Sensation 64) Volumenaufnahmen erstellt. Die dreidimensionale Rekonstruktion dieser Volumendatensätze und das Setzen der anthropometrischen Messpunkte (n=11) sowie lineare (n=5) und Winkelmessungen (n=1) wurden im Programm VoXim® 6.1 von drei Untersuchern zweimal im Abstand von 14 Tagen durchgeführt. Mittels deskriptiver Analyse wurde die Standardabweichung für die gesetzten Messpunkte ermittelt und diese innerhalb der unterschiedlichen Datensätze verglichen.ErgebnisseDie deskriptive Statistik zeigte deutliche Unterschiede für die einzelnen Punkte in den drei Achsen des Koordinatensystems. Aufgrund anatomisch-morphologischer Kriterien wiesen die Punkte Pogonion und Gnathion eine höhere Standardabweichung (SDDVT Pog: 0,66–1,57 mm; SDMSCT Pog: 0,14–1,09 mm; SDDVT Gn: 1,05–1,77 mm; SDMSCT Gn: 0,20–0,85 mm) und eine dementsprechend niedrigere Präzision in der Transversalen, aber eine niedrigere Standardabweichung in der Sagittalen und in der Vertikalen auf. Genion, Spina nasalis anterior und Infradentale zeigten eine sehr geringe Standardabweichung in allen drei Ebenen. Für die Strecke (Mfl – Mfr) und den Winkel (Krl – Krr – Ge) stellte sich die Standardabweichung für das MSCT signifikant geringer dar als für die untersuchten DVTs (SDDVT Krl – Krr – Ge: 0,51–0,75 mm; SDMSCT Krl – Krr – Ge: 0,22 mm).SchlussfolgerungDie untersuchten DVT-Geräte eignen sich für die exakte dreidimensionale Vermessung anatomischer Strukturen und erfüllen alle Voraussetzungen für die 3D Kephalometrie.

[1]  R. Vetter ICRP Publication 103, The Recommendations of the International Commission on Radiological Protection , 2008 .

[2]  Ursula Hirschfelder,et al.  Three-dimensional volume tomographic study of the imaging accuracy of impacted teeth: MSCT and CBCT comparison--an in vitro study. , 2013, European journal of orthodontics.

[3]  Kaoru Kobayashi,et al.  Accuracy in measurement of distance using limited cone-beam computerized tomography. , 2004, The International journal of oral & maxillofacial implants.

[4]  M. Ivanovic,et al.  Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. , 2008, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[5]  Danielle R. Periago,et al.  Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. , 2008, The Angle orthodontist.

[6]  Erwin Keeve,et al.  Geometric accuracy of a newly developed cone-beam device for maxillofacial imaging. , 2007, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[7]  H. Bosmans,et al.  Effective dose range for dental cone beam computed tomography scanners. , 2012, European journal of radiology.

[8]  Reinhilde Jacobs,et al.  A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT) Part I. On subjective image quality. , 2010, European journal of radiology.

[9]  Ward Re,et al.  Measurement precision and reliability in craniofacial anthropometry: implications and suggestions for clinical applications. , 1991 .

[10]  Christof Holberg,et al.  Cone-Beam Computed Tomography in Orthodontics: Benefits and Limitations , 2005, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[11]  Filip Schutyser,et al.  Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. , 2006, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[12]  R. Jacobs,et al.  A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy. , 2010, European journal of radiology.

[13]  J Mühling,et al.  Geometric accuracy of digital volume tomography and conventional computed tomography. , 2008, The British journal of oral & maxillofacial surgery.

[14]  C. Lascala,et al.  Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). , 2004, Dento maxillo facial radiology.

[15]  S. Brooks,et al.  Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. , 2006, Dento maxillo facial radiology.

[16]  T. Meindl,et al.  [Cross-sectional imaging in dentomaxillofacial diagnostics: dose comparison of dental MSCT and NewTom 9000 DVT]. , 2008, RöFo. Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren (Print).

[17]  S Baumrind,et al.  The reliability of head film measurements. 1. Landmark identification. , 1971, American journal of orthodontics.

[18]  Ulrich Wolf,et al.  Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. , 2008, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[19]  Janalt Damstra,et al.  Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. , 2010, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[20]  B Kusnoto,et al.  Assessment of 3-dimensional computer-generated cephalometric measurements. , 1999, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[21]  R Jacobs,et al.  Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. , 2009, European journal of radiology.

[22]  Allan G Farman,et al.  Linear accuracy of cone beam CT derived 3D images. , 2009, The Angle orthodontist.

[23]  Yijin Ren,et al.  Editor's Summary and Q&A: Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes , 2010 .

[24]  W. Scheidt Lehrbuch der Anthropologie , 1948 .

[25]  Kostas Tsiklakis,et al.  Dose reduction in maxillofacial imaging using low dose Cone Beam CT. , 2005, European journal of radiology.

[26]  U. Hirschfelder,et al.  Variance of Landmarks in Digital Evaluations: Comparison between CT-based and Conventional Digital Lateral Cephalometric Radiographs , 2007, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[27]  M Kortesniemi,et al.  Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. , 2008, Dento maxillo facial radiology.

[28]  M W Vannier,et al.  Craniofacial measurements based on 3D-CT volume rendering: implications for clinical applications. , 2004, Dento maxillo facial radiology.

[29]  P. Suetens,et al.  A comparison of jaw dimensional and quality assessments of bone characteristics with cone-beam CT, spiral tomography, and multi-slice spiral CT. , 2007, The International journal of oral & maxillofacial implants.

[30]  S A Stratemann,et al.  Comparison of cone beam computed tomography imaging with physical measures. , 2008, Dento maxillo facial radiology.

[31]  Jack Valentin,et al.  The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. , 2007, Annals of the ICRP.

[32]  N Shandala,et al.  Scope of radiological protection control measures. , 2007, Annals of the ICRP.

[33]  Ursula Hirschfelder,et al.  Measuring mesiodistal width of impacted maxillary canines , 2011, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[34]  Susan Ofner,et al.  Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. , 2009, Dento maxillo facial radiology.

[35]  Y. Harata,et al.  Absorbed and effective doses from cone beam volumetric imaging for implant planning. , 2009, Dento maxillo facial radiology.

[36]  Sheldon Baumrind,et al.  The reliability of head film measurements , 1971 .

[37]  E. Kaklamanos,et al.  Meta-analysis on the effectiveness of powered toothbrushes for orthodontic patients. , 2008, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[38]  Brandon Burke,et al.  Observer reliability of three-dimensional cephalometric landmark identification on cone-beam computerized tomography. , 2009, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[39]  S Hassfeld,et al.  Geometric accuracy of the NewTom 9000 Cone Beam CT. , 2005, Dento maxillo facial radiology.