On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes

In this paper, we review and construct fifth- and ninth-order central weighted essentially nonoscillatory (WENO) schemes based on a finite volume formulation, staggered mesh, and continuous extension of Runge-Kutta methods for solving non-linear hyperbolic conservation law systems. Negative linear weights appear in such a formulation and they are treated using the technique recently introduced by Shi et al. (J. Comput. Phys. 175, 108 (2002)). We then perform numerical computations and comparisons with the finite difference WENO schemes of Jiang and Shu (J. Comput. Phys. 150, 97 (1999)) and Balsara and Shu (J. Comput. Phys. 160, 405 (2000)). The emphasis is on the performance with or without a local characteristic decomposition. While this decomposition increases the computational cost, we demonstrate by our numerical experiments that it is still necessary to use it to control spurious oscillations when the order of accuracy is high, both for the central staggered grid and for the upwind nonstaggered grid WENO schemes. We use the shock entropy wave interaction problem to demonstrate the advantage of using higher order WENO schemes when both shocks and complex solution features coexist.

[1]  S. Osher,et al.  High-Resolution Nonoscillatory Central Schemes with Nonstaggered Grids for Hyperbolic Conservation Laws , 1998 .

[2]  Doron Levy,et al.  A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations , 2000, SIAM J. Sci. Comput..

[3]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[4]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[5]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[6]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[7]  G. Tadmor,et al.  Non-oscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .

[8]  E. Tadmor,et al.  Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .

[9]  M. Zennaro Natural continuous extensions of Runge-Kutta formulas , 1986 .

[10]  High-resolution Non-oscillatory Central Schemes with Non-staggered Grids for Hyperbolic Conservation Laws Dedicated to Our Friend and Colleague , 1997 .

[11]  Gabriella Puppo,et al.  High-Order Central Schemes for Hyperbolic Systems of Conservation Laws , 1999, SIAM J. Sci. Comput..

[12]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[13]  Gabriella Puppo,et al.  A third order central WENO scheme for 2D conservation laws , 2000 .

[14]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[15]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[16]  Stanley Osher,et al.  UNIFORMLY HIGH ORDER ACCURATE , .

[17]  Alexander Kurganov,et al.  A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems , 2001, Numerische Mathematik.

[18]  Paul Arminjon,et al.  A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids , 1998 .

[19]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[20]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[21]  Stanley Osher,et al.  Convex ENO High Order Multi-dimensional Schemes without Field by Field Decomposition or Staggered Grids , 1998 .

[22]  IXu-Dong Liu,et al.  Nonoscillatory High Order Accurate Self-similar Maximum Principle Satisfying Shock Capturing Schemes I , 1996 .

[23]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[24]  Gabriella Puppo,et al.  On the behavior of the total variation in CWENO methods for conservation laws , 2000 .

[25]  Richard Sanders,et al.  High resolution staggered mesh approach for nonlinear hyperbolic systems of conser-vation laws , 1992 .

[26]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[27]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[28]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[29]  M. Zennaro Natural continuous extensions of Runge-Kutta methods , 1986 .

[30]  Stanley Osher,et al.  Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I , 1996 .

[31]  Alexander Kurganov,et al.  CENTRAL SCHEMES AND CONTACT DISCONTINUITIES , 2000 .

[32]  Chi-Wang Shu Numerical experiments on the accuracy of ENO and modified ENO schemes , 1990 .

[33]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[34]  P. Arminjon,et al.  Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace , 1995 .