Minimum risk versus capital and risk diversification strategies for portfolio construction

Abstract In this paper, we propose an extensive empirical analysis on three categories of portfolio selection models with very different objectives: minimization of risk, maximization of capital diversification, and uniform distribution of risk allocation. The latter approach, also called Risk Parity or Equal Risk Contribution (ERC), is a recent strategy for asset allocation that aims at equally sharing the risk among all the assets of the selected portfolio. The risk measure commonly used to select ERC portfolios is volatility. We propose here new developments of the ERC approach using Conditional Value-at-Risk (CVaR) as a risk measure. Furthermore, under appropriate conditions, we also provide an approach to find a CVaR ERC portfolio as a solution of a convex optimization problem. We investigate how these classes of portfolio models (Minimum-Risk, Capital-Diversification, and Risk-Diversification) work on seven investment universes, each with different sources of risk, including equities, bonds, and mixed assets. Then, we highlight some strengths and weaknesses of all portfolio strategies in terms of various performance measures.

[1]  Edward Qian,et al.  Risk Parity Portfolios : Efficient Portfolios Through True Diversification , 2008 .

[2]  R. Zenti,et al.  Risk Management in an Asset Management Company: A Practical Case , 2000 .

[3]  S. Uryasev,et al.  Drawdown Measure in Portfolio Optimization , 2003 .

[4]  Ľuboš Pástor Portfolio Selection and Asset Pricing Models , 1999 .

[5]  Zhenyu Wang,et al.  A Shrinkage Approach to Model Uncertainty and Asset Allocation , 2005 .

[6]  O. Scaillet Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall , 2004 .

[7]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[8]  Stephen J. Brown,et al.  Estimation risk and optimal portfolio choice , 1980 .

[9]  Stan Uryasev,et al.  Generalized deviations in risk analysis , 2004, Finance Stochastics.

[10]  Sergey Sarykalin,et al.  Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization , 2008 .

[11]  R. Zenti,et al.  Integrated Risk Management with a Filtered Bootstrap Approach , 2004 .

[12]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[13]  J. Hsu,et al.  A Survey of Alternative Equity Index Strategies , 2011 .

[14]  Javier F. Pena,et al.  Optimization Methods in Finance: Stochastic programming: theory and algorithms , 2006 .

[15]  M. Best,et al.  Sensitivity Analysis for Mean-Variance Portfolio Problems , 1991 .

[16]  Francisco J. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[17]  Wlodzimierz Ogryczak,et al.  Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..

[18]  Thierry Roncalli,et al.  Introduction to Risk Parity and Budgeting , 2013, 1403.1889.

[19]  Stefano Benati,et al.  Using medians in portfolio optimization , 2015, J. Oper. Res. Soc..

[20]  Francesco Cesarone,et al.  Equal Risk Bounding is better than Risk Parity for portfolio selection , 2017, J. Glob. Optim..

[21]  Ilias Zadik Noise sensitivity , 2014 .

[22]  Philippe Jorion International Portfolio Diversification with Estimation Risk , 1985 .

[23]  S. Rachev,et al.  Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures , 2008 .

[24]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[25]  R. Zenti,et al.  Risk Analysis for Asset Managers: Historical Simulation, the Bootstrap Approach and Value at Risk Calculation , 2000 .

[26]  Giovanni Barone-Adesi,et al.  Backtesting Derivative Portfolios with Filtered Historical Simulation (Fhs) , 2002 .

[27]  Julius A. Stratton,et al.  Publications and reports: violence and health. , 1993, Health affairs.

[28]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[29]  Michael Schyns,et al.  Robust Portfolio Selection , 2008 .

[30]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[31]  S. Prospero,et al.  Portfolio Optimization with Spectral Measures of Risk , 2002, cond-mat/0203607.

[32]  J. Jobson,et al.  Estimation for Markowitz Efficient Portfolios , 1980 .

[33]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[34]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[35]  Peter G. Martin,et al.  The Investor's Guide to Fidelity Funds , 1989 .

[36]  U. Cherubini,et al.  RiskMetrics Technical Document , 2015 .

[37]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[38]  J. M. Bevan,et al.  Rank Correlation Methods , 1949 .

[39]  Edward Y. Qian Risk Parity and Diversification , 2011, The Journal of Investing.

[40]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[41]  Phelim P. Boyle,et al.  The 1/n Pension Investment Puzzle , 2004 .

[42]  Giovanni Barone-Adesi,et al.  VaR without correlations for portfolios of derivative securities , 1999 .

[43]  Katya Scheinberg,et al.  Least-squares approach to risk parity in portfolio selection , 2015 .

[44]  I. Kondor,et al.  Noise sensitivity of portfolio selection under various risk measures , 2006, physics/0611027.

[45]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[46]  Stefano Colucci,et al.  Backtesting Value-at-Risk: A Comparison between Filtered Bootstrap and Historical Simulation , 2011 .

[47]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[48]  Florin Spinu,et al.  An Algorithm for Computing Risk Parity Weights , 2013 .

[49]  R. Thaler,et al.  Naive Diversification Strategies in Defined Contribution Saving Plans , 2001 .

[50]  T. Roncalli,et al.  The properties of equally-weighted risk contributions portfolios , 2010 .

[51]  A Risk Based Approach to Tactical Asset Allocation , 2011 .

[52]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[53]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments. , 1960 .

[54]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[55]  C. B. Barry PORTFOLIO ANALYSIS UNDER UNCERTAIN MEANS, VARIANCES, AND COVARIANCES , 1974 .

[56]  D. Bertsimas,et al.  Shortfall as a risk measure: properties, optimization and applications , 2004 .

[57]  Csaba I. Fábián Handling CVaR objectives and constraints in two-stage stochastic models , 2008, Eur. J. Oper. Res..

[58]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[59]  HsuJason,et al.  A Survey of Alternative Equity Index Strategies , 2011 .

[60]  B. Rustem,et al.  Robust min}max portfolio strategies for rival forecast and risk scenarios , 2000 .

[61]  A. Hirschman THE PATERNITY OF AN INDEX , 1964 .

[62]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .