The depth spectrum of negacyclic codes over Z4
暂无分享,去创建一个
[1] Elwyn R. Berlekamp. Negacyclic codes for the Lee metric , 1966 .
[2] H. Q. Dinh,et al. Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.
[3] Zhu Shi-xin,et al. Negacyclic codes over Galois rings of characteristic 2~a , 2012 .
[4] J. Wolfman. Negacyclic and cyclic codes over Z/sub 4/ , 1999 .
[5] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[6] Ana Slgean. Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .
[7] Victor K.-W. Wei,et al. On the depth distribution of linear codes , 2000, IEEE Trans. Inf. Theory.
[8] Tuvi Etzion. The depth distribution-a new characterization for linear codes , 1997, IEEE Trans. Inf. Theory.
[9] Bo Kong,et al. The depth spectrums of constacyclic codes over finite chain rings , 2015, Discret. Math..
[10] Ana Salagean,et al. Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..
[11] Shixin Zhu,et al. A note on negacyclic self-dual codes over Z2a , 2012, Discret. Math..
[12] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[13] H. Q. Dinh,et al. Complete Distances of All Negacyclic Codes of Length $2^{s}$ Over $\BBZ _{2^{a}}$ , 2007, IEEE Transactions on Information Theory.
[14] Shixin Zhu,et al. Dual and self-dual negacyclic codes of even length over Z2a , 2009, Discret. Math..
[15] Chris J. Mitchell. On Integer-Valued Rational Polynomials and Depth Distributions of Binary Codes , 1998, IEEE Trans. Inf. Theory.