The depth spectrum of negacyclic codes over Z4

The depth spectrum of any negacyclic code over Z 4 of even length is completely determined by using its residue and torsion codes.

[1]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[2]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[3]  Zhu Shi-xin,et al.  Negacyclic codes over Galois rings of characteristic 2~a , 2012 .

[4]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[5]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[6]  Ana Slgean Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .

[7]  Victor K.-W. Wei,et al.  On the depth distribution of linear codes , 2000, IEEE Trans. Inf. Theory.

[8]  Tuvi Etzion The depth distribution-a new characterization for linear codes , 1997, IEEE Trans. Inf. Theory.

[9]  Bo Kong,et al.  The depth spectrums of constacyclic codes over finite chain rings , 2015, Discret. Math..

[10]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[11]  Shixin Zhu,et al.  A note on negacyclic self-dual codes over Z2a , 2012, Discret. Math..

[12]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[13]  H. Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length $2^{s}$ Over $\BBZ _{2^{a}}$ , 2007, IEEE Transactions on Information Theory.

[14]  Shixin Zhu,et al.  Dual and self-dual negacyclic codes of even length over Z2a , 2009, Discret. Math..

[15]  Chris J. Mitchell On Integer-Valued Rational Polynomials and Depth Distributions of Binary Codes , 1998, IEEE Trans. Inf. Theory.