Large-Scale Stochastic Mixed-Integer Programming Algorithms for Power Generation Scheduling

This chapter presents a stochastic unit commitment model for power systems and revisits parallel decomposition algorithms for these types of models. The model is a two-stage stochastic programming problem with first-stage binary variables and second-stage mixed-binary variables. The here-and-now decision is to find day-ahead schedules for slow thermal power generators. The wait-and-see decision consists of dispatching power and scheduling fast-start generators. We discuss advantages and limitations of different decomposition methods and provide an overview of available software packages. A large-scale numerical example is presented using a modified IEEE 118-bus system with uncertain wind power generation.

[1]  Alan J. King,et al.  A Standard Input Format for Multiperiod Stochastic Linear Programs , 1987 .

[2]  David L. Woodruff,et al.  Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems , 2011, Comput. Manag. Sci..

[3]  Cosmin G. Petra,et al.  On Parallelizing Dual Decomposition in Stochastic Integer Programming , 2012, Oper. Res. Lett..

[4]  Marshall L. Fisher,et al.  An Applications Oriented Guide to Lagrangian Relaxation , 1985 .

[5]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[6]  Victor M. Zavala,et al.  Algorithmic innovations and software for the dual decomposition method applied to stochastic mixed-integer programs , 2017, Mathematical Programming Computation.

[7]  Cosmin G. Petra,et al.  Parallel Algebraic Modeling for Stochastic Optimization , 2014, 2014 First Workshop for High Performance Technical Computing in Dynamic Languages.

[8]  Sanjay Mehrotra,et al.  A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management , 2015, Oper. Res..

[9]  Claude Lemaréchal,et al.  Lagrangian Relaxation , 2000, Computational Combinatorial Optimization.

[10]  Minjiao Zhang,et al.  Finitely Convergent Decomposition Algorithms for Two-Stage Stochastic Pure Integer Programs , 2014, SIAM J. Optim..

[11]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[12]  Dinakar Gade,et al.  Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs , 2014, Math. Program..

[13]  Oliver Burger,et al.  Pyro - Python Remote Objects , 2012 .

[14]  Nikolaos V. Sahinidis,et al.  A finite branch-and-bound algorithm for two-stage stochastic integer programs , 2004, Math. Program..

[15]  Jacek Gondzio,et al.  New developments in the primal-dual column generation technique , 2013, Eur. J. Oper. Res..

[16]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[17]  Hanif D. Sherali,et al.  A modification of Benders' decomposition algorithm for discrete subproblems: An approach for stochastic programs with integer recourse , 2002, J. Glob. Optim..

[18]  David L. Woodruff,et al.  PySP: modeling and solving stochastic programs in Python , 2012, Mathematical Programming Computation.

[19]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[20]  Julia L. Higle,et al.  The C3 Theorem and a D2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification , 2005, Math. Program..

[21]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..