Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging.

We have combined Fourier-domain optical coherence tomography (FD-OCT) with a closed-loop adaptive optics (AO) system using a Hartmann-Shack wavefront sensor and a bimorph deformable mirror. The adaptive optics system measures and corrects the wavefront aberration of the human eye for improved lateral resolution (~4 μm) of retinal images, while maintaining the high axial resolution (~6 μm) of stand alone OCT. The AO-OCT instrument enables the three-dimensional (3D) visualization of different retinal structures in vivo with high 3D resolution (4×4×6 μm). Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

[1]  Krishnakumar Venkateswaran,et al.  Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope. , 2005, Applied optics.

[2]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[3]  S. Yun,et al.  Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. , 2005, Optics express.

[4]  Eugenie Dalimier,et al.  Comparative analysis of deformable mirrors for ocular adaptive optics. , 2005, Optics express.

[5]  John S. Werner,et al.  Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry , 2005 .

[6]  Joseph A. Izatt,et al.  Exposure time dependence of image quality in high-speed retinal in vivo Fourier-domain OCT , 2005, SPIE BiOS.

[7]  P. Artal,et al.  Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. , 2005, Optics express.

[8]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[9]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[10]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[11]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[12]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[13]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[14]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[15]  Ian Munro,et al.  Benefit of higher closed-loop bandwidths in ocular adaptive optics. , 2003, Optics express.

[16]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[17]  Ravi S. Jonnal,et al.  Coherence gating and adaptive optics in the eye , 2003, SPIE BiOS.

[18]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[19]  T. Yatagai,et al.  Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. , 2002, Optics letters.

[20]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[21]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[22]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[23]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[25]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[26]  J. Yellott Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing , 1982, Vision Research.

[27]  David R. Williams,et al.  Recent Advances in Retinal Imaging With Adaptive Optics , 2005 .

[28]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[29]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.