Highly Sensitive Color Tunablility by Scalable Nanomorphology of a Dielectric Layer in Liquid-Permeable Metal-Insulator-Metal Structure.

A liquid-permeable concept in a metal-insulator-metal (MIM) structure is proposed to achieve highly sensitive color-tuning property through the change of the effective refractive index of the dielectric insulator layer. A semicontinuous top metal film with nanoapertures, adopted as a transreflective layer for MIM resonator, allows to tailor the nanomorphology of a dielectric layer through selective etching of the underneath insulator layer, resulting in nanopillars and hollow voids in the insulator layer. By allowing outer mediums to enter into the hollow voids of the dielectric layer, such liquid-permeable MIM architecture enables to achieve the wavelength shift as large as 323.5 nm/RIU in the visible range, which is the largest wavelength shift reported so far. Our liquid-permeable approaches indeed provide dramatic color tunablility, a real-time sensing scheme, long-term durability, and reproducibility in a simple and scalable manner.

[1]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[2]  Shin-Tson Wu,et al.  Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces , 2015, Nature Communications.

[3]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[4]  Yaocheng Shi,et al.  High sensitivity visible light refractive index sensor based on high order mode Si3N4 photonic crystal nanobeam cavity. , 2017, Optics express.

[5]  Yan Wang,et al.  Enabling Access to the Confined Optical Field to Achieve High-Quality Plasmon Sensing , 2015, IEEE Photonics Technology Letters.

[6]  L. Jay Guo,et al.  High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography , 2011 .

[7]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[8]  C. Moon,et al.  Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator , 2017 .

[9]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme , 1936 .

[10]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.

[11]  Sunghwan Kim,et al.  Chemically Tunable, Biocompatible, and Cost-Effective Metal–Insulator–Metal Resonators Using Silk Protein and Ultrathin Silver Films , 2015 .

[12]  Akira Saito,et al.  Material design and structural color inspired by biomimetic approach , 2011, Science and technology of advanced materials.

[13]  M. Elbahri,et al.  Review of Metasurface Plasmonic Structural Color , 2017, Plasmonics.

[14]  Qiang Zhang,et al.  Photonic Materials for Sensing, Biosensing and Display Devices , 2016 .

[15]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[16]  P. Duxbury,et al.  Island‐to‐percolation transition during growth of metal films , 1994 .

[17]  Koray Aydin,et al.  Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films , 2014 .

[18]  Sin-Doo Lee,et al.  Importance of surface modification of a microcontact stamp for pattern fidelity of soluble organic semiconductors , 2016 .

[19]  Zhiqiang Wei,et al.  Scalable, full-colour and controllable chromotropic plasmonic printing , 2015, Nature Communications.

[20]  Guohui Xiao,et al.  Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit , 2013, Nature Communications.

[21]  T. C. Choy Effective medium theory : principles and applications , 1999 .

[22]  M. Serpe,et al.  Reflection Order Selectivity of Color‐Tunable Poly(N‐isopropylacrylamide) Microgel Based Etalons , 2011, Advanced materials.

[23]  Benjamin Gallinet,et al.  Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking. , 2015, ACS nano.

[24]  Yan Wang,et al.  Improving Plasmon Sensing Performance by Exploiting the Spatially Confined Field , 2016, Plasmonics.

[25]  Yan Wang,et al.  Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing , 2018 .

[26]  Jing Chen,et al.  Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. , 2015, ACS applied materials & interfaces.

[27]  H. Möhwald,et al.  Responsive Monochromatic Color Display Based on Nanovolcano Arrays , 2013 .

[28]  Haofei Shi,et al.  Structural colors: from plasmonic to carbon nanostructures. , 2011, Small.

[29]  Tsuyoshi Nomura,et al.  Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes , 2011 .

[30]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[31]  Eun-Soo Kim,et al.  Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay , 2015, Scientific Reports.

[32]  S. Lee,et al.  Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes , 2016, Scientific Reports.

[33]  Merrielle Spain,et al.  Tunable color filters based on metal-insulator-metal resonators. , 2009, Nano letters.

[34]  Anders Kristensen,et al.  Plasmonic metasurfaces for coloration of plastic consumer products. , 2014, Nano letters.

[35]  Jean-Luc Pelouard,et al.  λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. , 2011, Nano letters.

[36]  Jonathan M Cooper,et al.  Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. , 2016, ACS nano.

[37]  S. Lee,et al.  Combinatorial color arrays based on optical micro-resonators in monolithic architecture. , 2014, Optics express.

[38]  Li Tang,et al.  Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates , 2018 .

[39]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[40]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[41]  Ning Dai,et al.  Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles , 2014, Scientific Reports.

[42]  A. Urbas,et al.  A Large‐Area, Mushroom‐Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry–Perot Cavity Mechanism , 2015 .

[43]  T. Ebbesen,et al.  Plasmonic photon sorters for spectral and polarimetric imaging , 2008 .