Truthful Mechanisms via Greedy Iterative Packing

An important research thread in algorithmic game theory studies the design of efficient truthful mechanisms that approximate the optimal social welfare. A fundamental question is whether an *** -approximation algorithm translates into an *** -approximate truthful mechanism. It is well-known that plugging an *** -approximation algorithm into the VCG technique may not yield a truthful mechanism. Thus, it is natural to investigate properties of approximation algorithms that enable their use in truthful mechanisms. The main contribution of this paper is to identify a useful and natural property of approximation algorithms, which we call loser-independence; this property is applicable in the single-minded and single-parameter settings. Intuitively, a loser-independent algorithm does not change its outcome when the bid of a losing agent increases, unless that agent becomes a winner. We demonstrate that loser-independent algorithms can be employed as sub-procedures in a greedy iterative packing approach while preserving monotonicity. A greedy iterative approach provides a good approximation in the context of maximizing a non-decreasing submodular function subject to independence constraints. Our framework gives rise to truthful approximation mechanisms for various problems. Notably, some problems arise in online mechanism design.

[1]  Mohammad Taghi Hajiaghayi,et al.  Online auctions with re-usable goods , 2005, EC '05.

[2]  Yoav Shoham,et al.  Truth revelation in approximately efficient combinatorial auctions , 2002, EC '99.

[3]  Vahab S. Mirrokni,et al.  Tight approximation algorithms for maximum general assignment problems , 2006, SODA '06.

[4]  Moshe Babaioff,et al.  Mechanism Design for Single-Value Domains , 2005, AAAI.

[5]  Uriel Feige,et al.  Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[6]  Michel Gendreau,et al.  Combinatorial auctions , 2007, Ann. Oper. Res..

[7]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[8]  Ron Lavi,et al.  Algorithmic Mechanism Design , 2008, Encyclopedia of Algorithms.

[9]  Andreas S. Schulz,et al.  Revisiting the Greedy Approach to Submodular Set Function Maximization , 2007 .

[10]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[11]  Matthias Englert,et al.  Considering suppressed packets improves buffer management in QoS switches , 2007, SODA '07.

[12]  Noam Nisan,et al.  Online ascending auctions for gradually expiring items , 2005, SODA '05.

[13]  Sanjeev Khanna,et al.  A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 2005, SIAM J. Comput..

[14]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[15]  Moshe Babaioff,et al.  Single-value combinatorial auctions and implementation in undominated strategies , 2006, SODA '06.

[16]  Chaitanya Swamy,et al.  Truthful and near-optimal mechanism design via linear programming , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[17]  Richard Cole,et al.  Prompt Mechanisms for Online Auctions , 2008, SAGT.

[18]  Noam Nisan,et al.  Truthful approximation mechanisms for restricted combinatorial auctions , 2008, Games Econ. Behav..

[19]  Yossi Azar,et al.  Truthful Unification Framework for Packing Integer Programs with Choices , 2008, ICALP.

[20]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[21]  Marek Chrobak,et al.  Online Competitive Algorithms for Maximizing Weighted Throughput of Unit Jobs , 2004, STACS.

[22]  Noam Nisan,et al.  Incentive compatible multi unit combinatorial auctions , 2003, TARK '03.

[23]  N. Nisan Introduction to Mechanism Design (for Computer Scientists) , 2007 .

[24]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[25]  Hans Kellerer,et al.  A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 1999, RANDOM-APPROX.

[26]  Ryan Porter,et al.  Mechanism design for online real-time scheduling , 2004, EC '04.

[27]  Yishay Mansour,et al.  Competitive queueing policies for QoS switches , 2003, SODA '03.

[28]  Jason D. Hartline,et al.  Knapsack auctions , 2006, SODA '06.

[29]  Berthold Vöcking,et al.  Approximation techniques for utilitarian mechanism design , 2005, STOC '05.

[30]  Fei Li,et al.  Better online buffer management , 2007, SODA '07.

[31]  Shahar Dobzinski,et al.  On characterizations of truthful mechanisms for combinatorial auctions and scheduling , 2008, EC '08.

[32]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[33]  Éva Tardos,et al.  An approximate truthful mechanism for combinatorial auctions with single parameter agents , 2003, SODA '03.

[34]  Bruce Hajek On the Competitiveness of On-Line Scheduling of Unit-Length Packets with Hard Deadlines in Slotted Time , 2001 .

[35]  E. H. Clarke Multipart pricing of public goods , 1971 .

[36]  Yossi Azar,et al.  Truthful unsplittable flow for large capacity networks , 2007, SPAA '07.

[37]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[38]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[39]  Moshe Babaioff,et al.  Computationally-feasible truthful auctions for convex bundles , 2008, Games Econ. Behav..

[40]  Francis Y. L. Chin,et al.  Online Scheduling with Partial Job Values: Does Timesharing or Randomization Help? , 2003, Algorithmica.

[41]  Noam Nisan,et al.  Computationally feasible VCG mechanisms , 2000, EC '00.