DNA-based thermoelectric devices: A theoretical prospective

The thermoelectric performance of PolyG-PolyC and PolyA-PolyT double-stranded chains connected between organic contacts at different temperatures is theoretically studied on the basis of an effective model Hamiltonian. The obtained analytical expressions reveal the existence of important resonance effects leading to a significant enhancement of the Seebeck coefficient depending on the Fermi level position. High thermoelectric power factors, up to $P=(1.5\char21{}3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}\phantom{\rule{0.3em}{0ex}}\mathrm{W}\phantom{\rule{0.2em}{0ex}}{\mathrm{m}}^{\ensuremath{-}1}\phantom{\rule{0.2em}{0ex}}{\mathrm{K}}^{\ensuremath{-}2}$, are obtained close to the resonance energy. These values suggest that significantly high values of the thermoelectric figure of merit may be attained for synthetic DNA samples at room temperature. The possibility of combining $p$-type and $n$-type synthetic DNA chains in the design of a nanoscale Peltier cell is discussed, taking into account both contact and environmental effects.

[1]  G. Cuniberti,et al.  Dissipative effects in the electronic transport through DNA molecular wires (TT 33.3 Di 14:30 TU H3027) , 2005, cond-mat/0507565.

[2]  Ab initio study of model guanine assemblies: The role of π − π coupling and band transport , 2001, cond-mat/0110636.

[3]  T. Kostyrko An analytic approach to the conductance and I-V characteristics of polymeric chains , 2002 .

[4]  Eldon Emberly,et al.  Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts , 1998 .

[5]  Yoshiyuki Kawazoe,et al.  Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation , 2006 .

[6]  Hao Wang,et al.  Band-gap tunneling states in DNA. , 2004, Physical review letters.

[7]  B. McCord,et al.  Comparative current–voltage characteristics of nicked and repaired λ-DNA , 2003 .

[8]  Yijing Yan,et al.  Toward the Mechanism of Long-Range Charge Transfer in DNA: Theories and Models , 2002 .

[9]  J. Soler,et al.  Small polarons in dry DNA. , 2003, Physical review letters.

[10]  Robert G. Endres,et al.  Colloquium: The quest for high-conductance DNA , 2004 .

[11]  K. Iguchi π-ELECTRONS IN A SINGLE STRAND OF DNA: A PHENOMENOLOGICAL APPROACH , 2004 .

[12]  D. Sánchez-Portal,et al.  Electrons in dry DNA from density functional calculations , 2002, cond-mat/0209563.

[13]  Darrin M. York,et al.  Quantum Mechanical Treatment of Biological Macromolecules in Solution Using Linear-Scaling Electronic Structure Methods , 1998 .

[14]  S. Roche,et al.  Backbone-induced effects in the charge transport efficiency of synthetic DNA molecules , 2006 .

[15]  Enrique Maciá,et al.  The role of aperiodic order in science and technology , 2006 .

[16]  Tomoji Kawai,et al.  Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. , 2001, Physical review letters.

[17]  M. Ratner,et al.  DNA as a molecular wire , 2000 .

[18]  U. Landman,et al.  Charge Migration in DNA: Ion-Gated Transport , 2001, Science.

[19]  M. Wybourne,et al.  Acoustic phonon modes of rectangular quantum wires , 1997 .

[20]  M. Anantram,et al.  Environment and structure influence on DNA conduction , 2003 .

[21]  Yuyuan Tian,et al.  Study of single-nucleotide polymorphisms by means of electrical conductance measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Conwell,et al.  Polarons in DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[25]  Enrique Maciá,et al.  Thermoelectric power and electrical conductance of DNA based molecular junctions , 2005 .

[26]  M. Anantram,et al.  Influence of counter-ion-induced disorder in DNA conduction , 2003 .

[27]  G-quartet biomolecular nanowires , 2002, cond-mat/0203139.

[28]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[29]  Thermopower of single-molecule devices , 2004, cond-mat/0405453.

[30]  Michael Zwolak,et al.  Fast DNA sequencing via transverse electronic transport. , 2006, Nano letters.

[31]  E. Cox,et al.  Insulating behavior of lambda-DNA on the micron scale. , 2002, Physical review letters.

[32]  A. Calzolari,et al.  Towards metalated DNA-based structures , 2004 .

[33]  Antiresonances in molecular wires , 1999, cond-mat/9908391.

[34]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[35]  C. Kergueris,et al.  Electron transport through a metal-molecule-metal junction , 1999, cond-mat/9904037.

[36]  Self-assembled guanine ribbons as wide-bandgap semiconductors , 2001, cond-mat/0110634.

[37]  E. Starikov Role of electron correlations in deoxyribonucleic acid duplexes: is an extended Hubbard Hamiltonian a good model in this case? , 2003 .

[38]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[39]  Yuyuan Tian,et al.  Direct conductance measurement of single DNA molecules in aqueous solution , 2004 .

[40]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[41]  Interbase electronic coupling for transport through DNA , 2004, physics/0501070.

[42]  E. Starikov Electron–phonon coupling in DNA: a systematic study , 2005 .

[43]  Conductivity of DNA probed by conducting–atomic force microscopy: Effects of contact electrode, DNA structure, and surface interactions , 2004, cond-mat/0405547.

[44]  E. Cox,et al.  Scanning thermopower microscopy of guanine monolayers , 1995 .

[45]  S O Kelley,et al.  Femtosecond dynamics of DNA-mediated electron transfer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Doyeol Ahn,et al.  Electrical transport through 60 base pairs of poly(dG)-poly(dC) DNA molecules , 2002 .

[47]  H. Sugiyama,et al.  Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5‘-Localization of HOMO of Stacked GG Bases in B-Form DNA , 1996 .

[48]  N. Rösch,et al.  Electronic coupling between Watson–Crick pairs for hole transfer and transport in desoxyribonucleic acid , 2001 .

[49]  E. J. Baerends,et al.  Orbital interactions in hydrogen bonds important for cohesion in molecular crystals and mismatched pairs of DNA bases , 2002 .

[50]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[51]  A. Yamamoto,et al.  Thermoelectric properties of InSb and Ga0.03In0.97Sb thin films grown by metalorganic vapor-phase epitaxy , 2005 .

[52]  S. Roche,et al.  ELECTRONIC TRANSPORT AND THERMOPOWER IN APERIODIC DNA SEQUENCES , 2004 .

[53]  D. Mihailovic,et al.  Hole interactions with molecular vibrations on DNA. , 2004, Physical review letters.

[54]  C. Dekker,et al.  Backbone-induced semiconducting behavior in short DNA wires , 2002, cond-mat/0205367.

[55]  Claude Nogues,et al.  Direct Measurements of Electrical Transport Through Single DNA Molecules of Complex Sequence , 2005 .

[56]  Photoemission study of poly(dA)–poly(dT) DNA: Experimental and theoretical approach to the electronic density of states , 2004, cond-mat/0409637.

[57]  Nishiguchi Resonant acoustic-phonon modes in a quantum wire. , 1995, Physical review. B, Condensed matter.

[58]  S. Roche,et al.  Contact-dependent effects and tunneling currents in DNA molecules , 2005 .

[59]  T. Hatsui,et al.  Electronic structure of bases in DNA duplexes characterized by resonant photoemission spectroscopy near the Fermi level. , 2004, Physical review letters.

[60]  L. Mei,et al.  Electrical conductance of DNA molecules with varied density of itinerant pi electrons. , 2006, The Journal of chemical physics.

[61]  J. Tse,et al.  Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers , 2005 .

[62]  Wei-mou Zheng,et al.  Thermoelectric transport properties in atomic scale conductors. , 2004, The Journal of chemical physics.

[63]  B. Kippelen,et al.  Thermal transport properties of thin films of small molecule organic semiconductors , 2005 .

[64]  S. Datta,et al.  Thermoelectric effect in molecular electronics , 2003, cond-mat/0301232.

[65]  Michael Zwolak,et al.  Electronic signature of DNA nucleotides via transverse transport. , 2004, Nano letters.

[66]  Wei Zhang,et al.  Polarons with a twist , 2002 .

[67]  Otto F. Sankey,et al.  ELECTRONIC-STRUCTURE-BASED MOLECULAR-DYNAMICS METHOD FOR LARGE BIOLOGICAL SYSTEMS : APPLICATION TO THE 10 BASEPAIR POLY(DG).POLY(DC) DNA DOUBLE HELIX , 1997 .

[68]  YiJing Yan,et al.  Electrical transport through individual DNA molecules , 2001, cond-mat/0107015.

[69]  G. Kickelbick Formation of hexagonal mesoporous silica in submicrometer channels. , 2005, Small.