Hierarchical Nacre Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Self-Healing Polymers.

Designing the reversible interactions of biopolymers remains a grand challenge for an integral mimicry of mechanically superior biological composites. Yet, they are the key to synergistic combinations of stiffness and toughness by providing sacrificial bonds with hidden length scales. To address this challenge, dynamic polymers were designed with low glass-transition temperature T(g) and bonded by quadruple hydrogen-bonding motifs, and subsequently assembled with high-aspect-ratio synthetic nanoclays to generate nacre-mimetic films. The high dynamics and self-healing of the polymers render transparent films with a near-perfectly aligned structure. Varying the polymer composition allows molecular control over the mechanical properties up to very stiff and very strong films (E≈45 GPa, σ(UTS)≈270 MPa). Stable crack propagation and multiple toughening mechanisms occur in situations of balanced dynamics, enabling synergistic combinations of stiffness and toughness. Excellent gas barrier properties complement the multifunctional property profile.

[1]  D. Demco,et al.  Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios , 2015, Nature Communications.

[2]  Ben Wang,et al.  A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. , 2014, ACS nano.

[3]  H. Schaefer,et al.  Covalent hypercoordination: can carbon bind five methyl ligands? , 2014, Angewandte Chemie.

[4]  Kim K. Oehlenschlaeger,et al.  Adaptable Hetero Diels–Alder Networks for Fast Self‐Healing under Mild Conditions , 2014, Advanced materials.

[5]  H. Tenhu,et al.  Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites. , 2014, Angewandte Chemie.

[6]  Costantino Creton,et al.  Toughening Elastomers with Sacrificial Bonds and Watching Them Break , 2014, Science.

[7]  Lei Jiang,et al.  Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. , 2014, ACS nano.

[8]  E. W. Meijer,et al.  From Molecular Structure to Macromolecular Organization: Keys to Design Supramolecular Biomaterials , 2013 .

[9]  A. Walther,et al.  Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics. , 2013, Nanoscale.

[10]  Á. Alegría,et al.  Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacre‐mimetic Nanocomposites , 2013, Advanced materials.

[11]  J. M. Elliott,et al.  Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends – a route to property enhancement , 2013 .

[12]  Luqi Liu,et al.  High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films. , 2013, Small.

[13]  O. Ikkala,et al.  Deoxyguanosine phosphate mediated sacrificial bonds promote synergistic mechanical properties in nacre-mimetic nanocomposites. , 2013, Biomacromolecules.

[14]  A. Walther,et al.  Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. , 2013, ACS applied materials & interfaces.

[15]  Qi Zhou,et al.  Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: extending the range of mechanical and barrier properties. , 2013, Biomacromolecules.

[16]  T. Lunkenbein,et al.  UV‐Cured, Flexible, and Transparent Nanocomposite Coating with Remarkable Oxygen Barrier , 2012, Advanced materials.

[17]  Christopher Barner-Kowollik,et al.  Current trends in the field of self-healing materials , 2012 .

[18]  E. W. Meijer,et al.  Aggregation of ureido-pyrimidinone supramolecular thermoplastic elastomers into nanofibers : a kinetic analysis , 2011 .

[19]  Himadri S. Gupta,et al.  Deformation and Fracture Mechanisms of Bone and Nacre , 2011 .

[20]  Xiao-Han Wang,et al.  Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. , 2011, Chemical Society reviews.

[21]  G. G. Peters,et al.  Effects of Branching and Crystallization on Rheology of Polycaprolactone Supramolecular Polymers with Ureidopyrimidinone End Groups , 2011 .

[22]  O. Ikkala,et al.  Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. , 2011, Biomacromolecules.

[23]  T. Lunkenbein,et al.  Barrier Properties of Synthetic Clay with a Kilo‐Aspect Ratio , 2010, Advanced materials.

[24]  A. Walther,et al.  Supramolekulare Kontrolle der mechanischen Eigenschaften feuerabschirmender biomimetischer Perlmuttanaloga , 2010 .

[25]  Andreas Walther,et al.  Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. , 2010, Angewandte Chemie.

[26]  Yusuke Yamauchi,et al.  Liquid crystal phases in the aqueous colloids of size-controlled fluorinated layered clay mineral nanosheets. , 2010, Chemical communications.

[27]  Shuhong Yu,et al.  Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. , 2010, Angewandte Chemie.

[28]  O. Ikkala,et al.  Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. , 2010, Nano letters.

[29]  J. Grunlan,et al.  Transparent Clay−Polymer Nano Brick Wall Assemblies with Tailorable Oxygen Barrier , 2010 .

[30]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[31]  P. Fratzl,et al.  Sacrificial Ionic Bonds Need To Be Randomly Distributed To Provide Shear Deformability , 2009, Nano letters.

[32]  A. Waas,et al.  The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites , 2009 .

[33]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[34]  Zhiyong Tang,et al.  Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links. , 2008, The journal of physical chemistry. B.

[35]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[36]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[37]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[38]  F. Mizukami,et al.  Flexible Transparent Clay Films with Heat‐Resistant and High Gas‐Barrier Properties , 2007 .

[39]  E. W. Meijer,et al.  Cooperative End-to-End and Lateral Hydrogen-Bonding Motifs in Supramolecular Thermoplastic Elastomers , 2006 .

[40]  Volker Abetz,et al.  Smart silica-rubber nanocomposites in virtue of hydrogen bonding interaction , 2005 .

[41]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[42]  T. Cosgrove,et al.  A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on Laponite. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[43]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[44]  M. Hager,et al.  Self‐Healing Materials , 2010, Advanced materials.

[45]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .