Time‐Varying Parameter Realized Volatility Models

In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR-RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR-RV models. Time-varying parameter (TVP) models can significantly outperform their constant-coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  P. Gaenssler,et al.  On central limit theorems for martingale triangular arrays , 1978 .

[2]  David E. Rapach,et al.  Structural breaks and GARCH models of exchange rate volatility , 2008 .

[3]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[4]  Benoit Perron,et al.  Long Memory and the Relation between Implied and Realized Volatility , 2006 .

[5]  Zongwu Cai,et al.  Local M-estimator for nonparametric time series , 2003 .

[6]  Lucio Sarno,et al.  Exchange Rates and Fundamentals: Footloose or Evolving Relationship? , 2008 .

[7]  B. LeBaron,et al.  A test for independence based on the correlation dimension , 1996 .

[8]  Tim Bollerslev,et al.  Exploiting the errors: A simple approach for improved volatility forecasting , 2016 .

[9]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[10]  Zongwu Cai A two–stage approach to additive time series models , 2002 .

[11]  Jiti Gao,et al.  Nonparametric Estimation and Parametric Calibration of Time-Varying Coefficient Realized Volatility Models , 2013 .

[12]  Guofu Zhou,et al.  Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation , 2003 .

[13]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[14]  Yisong S. Tian,et al.  The Model-Free Implied Volatility and Its Information Content , 2005 .

[15]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[16]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[17]  Roberto Renò,et al.  Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting , 2008 .

[18]  Tim Bollerslev,et al.  Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility , 2007 .

[19]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[20]  Tianyang Wang,et al.  The Forecasting Efficacy of Risk‐Neutral Moments for Crude Oil Volatility , 2015 .

[21]  C. Liu,et al.  Are There Structural Breaks in Realized Volatility , 2008 .

[22]  Philippe Jorion Predicting Volatility in the Foreign Exchange Market , 1995 .

[23]  Yi Lu,et al.  Forecasting realized volatility using a long-memory stochastic volatility model : estimation, prediction and seasonal adjustment , 2006 .

[24]  Torben G. Andersen,et al.  Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities , 2005 .

[25]  Zongwu Cai,et al.  Application of a local linear autoregressive model to BOD time series , 2000 .

[26]  Jeff Fleming The quality of market volatility forecasts implied by S&P 100 index option prices , 1998 .

[27]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[28]  Chris Kirby,et al.  The Economic Value of Volatility Timing Using 'Realized' Volatility , 2001 .

[29]  M. Halling,et al.  Predictive Regressions with Time-Varying Coefficients , 2008 .

[30]  Z. Cai,et al.  A Semiparametric Conditional Capital Asset Pricing Model , 2015 .

[31]  T. Bollerslev,et al.  Realized volatility forecasting and market microstructure noise , 2011 .

[32]  T. V. Ramanathan,et al.  Nonparametric estimation of a time-varying GARCH model , 2013 .

[33]  A. Banerjee,et al.  Modelling structural breaks, long memory and stock market volatility: an overview , 2005 .

[34]  M. Hashem Pesaran,et al.  Testing Dependence Among Serially Correlated Multicategory Variables , 2006, SSRN Electronic Journal.

[35]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[36]  N. Aslanidis,et al.  Nonparametric correlation models for portfolio allocation , 2013 .

[37]  Feng Ma,et al.  Forecasting realized volatility in a changing world: A dynamic model averaging approach , 2016 .

[38]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[39]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .

[40]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[41]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[42]  Kevin Sheppard,et al.  Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility , 2013, Review of Economics and Statistics.

[43]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[44]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .