Fejér monotone sequences and nonexpansive mappings
暂无分享,去创建一个
[1] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[2] Heinz H. Bauschke,et al. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.
[3] Heinz H. Bauschke,et al. Projection algorithms and monotone operators , 1996 .
[4] Heinz H. Bauschke,et al. A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..
[5] Heinz H. Bauschke,et al. The Douglas-Rachford Algorithm for Two (Not Necessarily Intersecting) Affine Subspaces , 2015, SIAM J. Optim..
[6] Patrick L. Combettes,et al. Fejér Monotonicity in Convex Optimization , 2009, Encyclopedia of Optimization.
[7] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[8] A. Ostrowski. Solution of equations in Euclidean and Banach spaces , 1973 .
[9] A. Pazy. Asymptotic behavior of contractions in hilbert space , 1971 .
[10] P. L. Combettes,et al. Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .
[11] P. L. Combettes,et al. Quasi-Fejérian Analysis of Some Optimization Algorithms , 2001 .
[12] Heinz H. Bauschke,et al. The Douglas-Rachford algorithm in the affine-convex case , 2015, Oper. Res. Lett..