Low Power BDD-based Synthesis Using Dual Rail Static DCVSPG Logic

Binary decision diagrams (BDDs) play an important role in the synthesis, verification, and testing of VLSI circuits. In this paper, we have proposed a new BDD-based synthesis technique using dual rail static differential cascode voltage switch with pass gate (DCVSPG) logic. The method yields around 22% reduction in number of MUX cells. Simulation result using SPICE on 180 nm technology with 1.5 volts supply shows, on an average, 65% reduction in power consumption for frequency ranging up to 1 GHz compared to the result with static CMOS logic. It is envisaged that the proposed approach is useful in realizing low-power circuits