Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys

AlxCoCrFeNi alloys with multiprincipal elements (x values in a molar ratio of 1, 1.5, 2, 2.5 and 3) are prepared by using an arc-melting plus casting method. Their microstructure and mechanical properties are investigated. The results show that the structure of the alloys is an ordered BCC, which is considered as a B2 structure. This result confirms that Al promotes the formation of BCC structure especially when Cu in the alloy is absent. The increase of x leads to distortion of the crystalline lattice and the alloy strengthening. The hardness of the alloys increases with x while the highest hardness (740 HV) is achieved when x =3 . © 2010 Elsevier B.V. All rights reserved.

[1]  W. L. Johnson,et al.  A highly processable metallic glass: Zr[sub 41. 2]Ti[sub 13. 8]Cu[sub 12. 5]Ni[sub 10. 0]Be[sub 22. 5] , 1993 .

[2]  Yong Zhang,et al.  Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties , 2008 .

[3]  A. Inoue,et al.  Zr–Al–Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region , 1990 .

[4]  Y. S. Huang,et al.  Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys , 2007 .

[5]  W. Johnson,et al.  A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 , 1993 .

[6]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[7]  Yuan-Sheng Huang,et al.  Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy , 2007 .

[8]  菊池 潮美 Cohesion in Metals, Transition Metal alloys, F.R.de Boer,R.Boom,W.C.M.Mattens,A.R.Miedema,A.K.Niessen(共著), F.R de boer,D.G.pettifor編Cohesion and Structure Vol.1, 1989年, North-Holland発行, 23×15.5cm, 758ページ, Dfl.250 , 1990 .

[9]  Y. Zhou,et al.  Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties , 2007 .

[10]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[11]  Akira Takeuchi,et al.  Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys : Special issue on bulk amorphous, nano-crystalline and nano-quasicrystalline alloys , 2000 .

[12]  B. S. Murty,et al.  Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying , 2008 .

[13]  Yan Ping Wang,et al.  Solid Solution or Intermetallics in a High‐Entropy Alloy , 2009 .

[14]  T. Shun,et al.  Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating , 2004 .

[15]  Yong Zhang,et al.  Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys , 2007 .

[16]  A. Inoue,et al.  New Amorphous Mg-Ce-Ni Alloys with High Strength and Good Ductility , 1988 .

[17]  J. Li,et al.  Microstructure and properties of AlTiNiMnBx high entropy alloys , 2008 .

[18]  C. Li,et al.  B2 structure of high-entropy alloys with addition of Al , 2008 .

[19]  Yuan-Sheng Huang,et al.  On the elemental effect of AlCoCrCuFeNi high-entropy alloy system , 2007 .

[20]  A. Inoue,et al.  Preparation of new Ni-based amorphous alloys with a large supercooled liquid region , 1999 .