Stabilization of Axon Branch Dynamics by Synaptic Maturation

The developmental refinement of topographic projections in the brain is reflected in the dynamic sculpting of axonal arbors that takes place as connections between CNS structures form and mature. To examine the role of synaptogenesis and synaptic maturation in the structural development of axonal projections during the formation of the topographic retinotectal projection, we coexpressed cytosolic fluorescent protein (FP) and FP-tagged synaptophysin (SYP) in small numbers of retinal ganglion cells in living albino Xenopus laevis tadpoles to reveal the distribution and dynamics of presynaptic sites within labeled retinotectal axons. Two-photon time-lapse observations followed by quantitative analysis of tagged SYP levels at individual synapses demonstrated the time course of synaptogenesis: increases in presynaptic punctum intensity are detectable within minutes of punctum emergence and continue over many hours. Puncta lifetimes correlate with their intensities. Furthermore, we found that axon arbor dynamics are affected by synaptic contacts. Axon branches retract past faintly labeled puncta but are locally stabilized at intensely labeled SYP puncta. Visual stimulation for 4 h enhanced the stability of the arbor at intense presynaptic puncta while concurrently inducing the retraction of exploratory branches with only faintly labeled or no synaptic sites.

[1]  Thomas C. Südhof,et al.  The Synaptic VesicleCycle Revisited , 2000, Neuron.

[2]  T. Serwold,et al.  Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases , 2022 .

[3]  B. Glick,et al.  Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) , 2002, Nature Biotechnology.

[4]  H. Cline,et al.  Coordinated Motor Neuron Axon Growth and Neuromuscular Synaptogenesis Are Promoted by CPG15 In Vivo , 2005, Neuron.

[5]  John T. Schmidt,et al.  Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. , 2004, Journal of neurobiology.

[6]  H. Cline Activity-dependent plasticity in the visual systems of frogs and fish , 1991, Trends in Neurosciences.

[7]  H. Cline,et al.  Regulation of Rho GTPases by Crosstalk and Neuronal Activity In Vivo , 2002, Neuron.

[8]  H. Cline,et al.  Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo , 2000, Nature Neuroscience.

[9]  M. Zhen,et al.  Presynaptic terminal differentiation: transport and assembly , 2004, Current Opinion in Neurobiology.

[10]  E. S. Ruthazer,et al.  Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. , 2004, Journal of neurobiology.

[11]  Hollis T. Cline,et al.  NMDA receptor antagonists disrupt the retinotectal topographic map , 1989, Neuron.

[12]  Hollis T. Cline,et al.  NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. , 1999 .

[13]  W. Birchmeier,et al.  Role of β-Catenin in Synaptic Vesicle Localization and Presynaptic Assembly , 2003, Neuron.

[14]  Scott E. Fraser,et al.  Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission , 1994, Neuron.

[15]  J. Faber,et al.  Normal table of Xenopus laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. , 1956 .

[16]  J. Sanes,et al.  Synaptic adhesion molecules. , 2003, Current opinion in cell biology.

[17]  T. Südhof,et al.  The synaptic vesicle cycle revisited. , 2000, Neuron.

[18]  R J Kaethner,et al.  Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Herwig Baier,et al.  Regulation of axon growth in vivo by activity-based competition , 2005, Nature.

[20]  H. Cline,et al.  Control of retinotectal axon arbor growth by postsynaptic CaMKII. , 1996, Progress in brain research.

[21]  M. Blue,et al.  The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis , 1983, Journal of neurocytology.

[22]  C. Kaether,et al.  Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. , 2000, Molecular biology of the cell.

[23]  Eckart D. Gundelfinger,et al.  Assembling the Presynaptic Active Zone A Characterization of an Active Zone Precursor Vesicle , 2001, Neuron.

[24]  W. Birchmeier,et al.  Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. , 2003, Neuron.

[25]  S. Easter,et al.  An evaluation of the hypothesis of shifting terminals in goldfish optic tectum , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Richard D Fetter,et al.  Highwire Regulates Presynaptic BMP Signaling Essential for Synaptic Growth , 2004, Neuron.

[27]  R. Balice-Gordon,et al.  In Vivo Imaging of Preferential Motor Axon Outgrowth to and Synaptogenesis at Prepatterned Acetylcholine Receptor Clusters in Embryonic Zebrafish Skeletal Muscle , 2006, The Journal of Neuroscience.

[28]  N. Ziv,et al.  Unitary Assembly of Presynaptic Active Zones from Piccolo-Bassoon Transport Vesicles , 2003, Neuron.

[29]  John T. Schmidt,et al.  Activity-driven sharpening of the retinotectal projection: the search for retrograde synaptic signaling pathways. , 2004, Journal of neurobiology.

[30]  References , 1971 .

[31]  P. Pochet A Quantitative Analysis , 2006 .

[32]  N. Ziv,et al.  Postsynaptic Density Assembly Is Fundamentally Different from Presynaptic Active Zone Assembly , 2004, The Journal of Neuroscience.

[33]  H. Cline,et al.  In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors. , 1996, Journal of neurobiology.

[34]  C. Holt,et al.  The Neuronal Architecture of Xenopus Retinal Ganglion Cells Is Sculpted by Rho-Family GTPases In Vivo , 1999, The Journal of Neuroscience.

[35]  J. E. Vaughn,et al.  Fine structure of synaptogenesis in the vertebrate central nervous system. , 1989, Synapse.

[36]  A. Nikolakopoulou,et al.  BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo , 2005, Development.

[37]  James E. Vaughn,et al.  Review: Fine structure of synaptogenesis in the vertebrate central nervous system , 1989 .

[38]  J. Schmidt,et al.  Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. , 1993, Journal of neurobiology.

[39]  Berta Alsina,et al.  Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF , 2001, Nature Neuroscience.

[40]  H. Cline,et al.  Distribution of synaptic vesicle proteins within single retinotectal axons of Xenopus tadpoles. , 1998, Journal of neurobiology.

[41]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[42]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[43]  Susanne E. Ahmari,et al.  Assembly of presynaptic active zones from cytoplasmic transport packets , 2000, Nature Neuroscience.

[44]  C. Akerman,et al.  Visually Driven Regulation of Intrinsic Neuronal Excitability Improves Stimulus Detection In Vivo , 2003, Neuron.

[45]  J. Schmidt,et al.  MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition. , 2000, Journal of neurobiology.

[46]  D. O'Leary,et al.  Molecular gradients and development of retinotopic maps. , 2005, Annual review of neuroscience.

[47]  T. Reh,et al.  Retinal ganglion cell terminals change their projection sites during larval development of Rana pipiens , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  N. Ziv,et al.  Cellular and molecular mechanisms of presynaptic assembly , 2004, Nature Reviews Neuroscience.

[49]  D. Bredt,et al.  Assembly and plasticity of the glutamatergic postsynaptic specialization , 2003, Current Opinion in Neurobiology.