Structural Aspects of Metallic Glasses

A recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute-solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with 'free' and 'anti-free' microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static andmore » dynamic structural views is suggested.« less

[1]  H. Wiedersich,et al.  Heat Capacity, Transformations, and Thermal Disorder in the Solid Electrolyte RbAg4I5 , 1969 .

[2]  J. D. Bernal,et al.  Geometry of the Structure of Monatomic Liquids , 1960, Nature.

[3]  Suzuki,et al.  Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. , 1987, Physical review. B, Condensed matter.

[4]  Sietsma,et al.  Characterization of free volume in atomic models of metallic glasses. , 1995, Physical review. B, Condensed matter.

[5]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[6]  M. Chen,et al.  RETRACTED – Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility , 2000 .

[7]  V. Vítek,et al.  Radial Distribution Function and Structural Relaxation in Amorphous Solids , 1981 .

[8]  A. Inoue,et al.  Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses , 2000 .

[9]  T. Egami Universal criterion for metallic glass formation , 1997 .

[10]  J. Eckert,et al.  As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy , 2000 .

[11]  R. Dauskardt,et al.  Temperature dependence of positron annihilation in a Zr–Ti–Ni–Cu–Be bulk metallic glass , 2003 .

[12]  A. Inoue,et al.  Nanoicosahedral quasicrystalline phase in Zr–Pd and Zr–Pt binary alloys , 2001 .

[13]  D. Srolovitz,et al.  CORRIGENDUM: Local structural fluctuations in amorphous and liquid metals: a simple theory of the glass transition , 1982 .

[14]  J. Sietsma,et al.  The glass transition as a free volume related kinetic phenomenon , 1990 .

[15]  F. Faupel,et al.  Activation Volume of 57 Co Diffusion in Amorphous Co 81 Zr 19 , 1998 .

[16]  Takeshi Egami,et al.  Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network , 2007 .

[17]  Daniel B. Miracle A structural model for metallic glasses , 2004 .

[18]  K. Kelton,et al.  Improved Al–Y–Fe glass formation by microalloying with Ti , 2004 .

[19]  A. L. Greer,et al.  Thickness of shear bands in metallic glasses , 2006 .

[20]  Daniel B. Miracle,et al.  Candidate Atomic Cluster Configurations in Metallic Glass Structures , 2006 .

[21]  K. Hono,et al.  Nanoquasicrystallization of Zr-based metallic glasses , 2001 .

[22]  A. Inoue,et al.  Nano-Metals I. Nano Icosahedral Quasicrystalline Phase in Zr65Al7.5Ni10Ag17.5 Quaternary Glassy Alloy. , 2001 .

[23]  F. Faupel,et al.  Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr 65 Al 7.5 Ni 10 Cu 17.5 during structural relaxation and at the glass transition , 1999 .

[24]  K. Flores,et al.  Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation , 2007 .

[25]  R. Raj,et al.  Limiting Densities for Dense Random Packing of Spheres , 1982 .

[26]  F. Stillinger,et al.  Packing Structures and Transitions in Liquids and Solids , 1984, Science.

[27]  H. Schober Soft phonons in glasses , 1993 .

[28]  R. Dauskardt,et al.  Characterization of Free Volume in a Bulk Metallic Glass Using Positron Annihilation Spectroscopy , 2002 .

[29]  K. Kelton,et al.  Difference in icosahedral short-range order in early and late transition metal liquids. , 2004, Physical review letters.

[30]  J. Sietsma,et al.  Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation , 1998 .

[31]  J. Sietsma,et al.  An investigation of universal medium range order in metallic glasses , 1991 .

[32]  D. Miracle Efficient Local Packing in Metallic Glasses , 2004 .

[33]  A. Inoue,et al.  Formation of icosahedral quasicrystalline phase in Zr-Al-Ni-Cu-M (M=Ag, Pd, Au or Pt) systems , 1999 .

[34]  U. Harms,et al.  Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20 , 2003 .

[35]  F. Spaepen,et al.  Description of chemical ordering in amorphous alloys , 1981 .

[36]  K F Kelton,et al.  First x-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. , 2003, Physical review letters.

[37]  J. Dodds,et al.  Physics of granular media , 1991 .

[38]  T. Egami Magnetic amorphous alloys: physics and technological applications , 1984 .

[39]  T. Hufnagel,et al.  Short-range and medium-range order in(Zr(70)Cu(20)Ni(10))(90-x)Ta(x)Al(10) bulk amorphous alloys , 2003 .

[40]  D. Miracle The efficient cluster packing model : An atomic structural model for metallic glasses , 2006 .

[41]  J. D. Bernal,et al.  A Geometrical Approach to the Structure Of Liquids , 1959, Nature.

[42]  P. Gaskell,et al.  Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data , 2005 .

[43]  K. Flores,et al.  Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses , 2003 .

[44]  J. Abelson,et al.  Absence of an abrupt phase change from polycrystalline to amorphous in silicon with deposition temperature. , 2001, Physical review letters.

[45]  M. Marcus Electrical resistometric detection of relaxation in an amorphous PdSiSb alloy , 1979 .

[46]  Chen,et al.  Local fluctuations and ordering in liquid and amorphous metals. , 1988, Physical review. B, Condensed matter.

[47]  Ian McNulty,et al.  Fluctuation microscopy: a probe of medium range order , 2005 .

[48]  Xiaoming Mao,et al.  Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy , 2005 .

[49]  F. Frank Supercooling of liquids , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[51]  J. Leja Structure of Solids , 1982 .

[52]  A. Inoue Bulk amorphous alloys with soft and hard magnetic properties , 1997 .

[53]  A. Argon Plastic deformation in metallic glasses , 1979 .

[54]  J. H. He,et al.  Icosahedral short-range order in amorphous alloys. , 2004, Physical review letters.

[55]  D. Polk The structure of glassy metallic alloys , 1972 .

[56]  F. Spaepen,et al.  The kinetics of structural relaxation of a metallic glass , 1980 .

[57]  A. Yavari,et al.  Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation , 2004 .

[58]  A. Inoue,et al.  Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass , 1999 .

[59]  J. D. Bernal,et al.  The Bakerian Lecture, 1962 The structure of liquids , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[60]  K. Flores,et al.  Characterization of plasticity-induced structural changes in a Zr-based bulk metallic glass using positron annihilation spectroscopy , 2007 .

[61]  J. D. BERNAL,et al.  Packing of Spheres: Co-ordination of Randomly Packed Spheres , 1960, Nature.

[62]  T. Nieh,et al.  Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.6 , 2000 .

[63]  P. Gaskell A new structural model for amorphous transition metal silicides, borides, phosphides and carbides , 1979 .

[64]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[65]  T. Hufnagel,et al.  Relation between short-range order and crystallization behavior in Zr-based amorphous alloys , 2000 .

[66]  J. Finney,et al.  Modelling the structures of amorphous metals and alloys , 1977, Nature.