Adjoint Gradient-enhanced Kriging Model for Time-dependent Reliability Analysis

[1]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[2]  Tom Dhaene,et al.  High dimensional Kriging metamodelling utilising gradient information , 2016 .

[3]  M. Balesdent,et al.  Kriging-based adaptive Importance Sampling algorithms for rare event estimation , 2013 .

[4]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[5]  Jens-Dominik Müller,et al.  On the performance of discrete adjoint CFD codes using automatic differentiation , 2005 .

[6]  Pingfeng Wang,et al.  A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization , 2012 .

[7]  Tom Dhaene,et al.  Performance study of gradient-enhanced Kriging , 2015, Engineering with Computers.

[8]  Sankaran Mahadevan,et al.  A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis , 2016 .

[9]  Zhen Hu,et al.  Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis , 2015 .

[10]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[11]  Hongping Zhu,et al.  Assessing small failure probabilities by AK–SS: An active learning method combining Kriging and Subset Simulation , 2016 .

[12]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[13]  Mark G. Stewart,et al.  Reliability-based assessment of ageing bridges using risk ranking and life cycle cost decision analyses , 2001, Reliab. Eng. Syst. Saf..

[14]  Shengtai Li,et al.  Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution , 2002, SIAM J. Sci. Comput..

[15]  Jack P. C. Kleijnen,et al.  Regression and Kriging metamodels with their experimental designs in simulation: A review , 2017, Eur. J. Oper. Res..

[16]  S. Rice Mathematical analysis of random noise , 1944 .

[17]  Bruno Sudret,et al.  The PHI2 method: a way to compute time-variant reliability , 2004, Reliab. Eng. Syst. Saf..

[18]  M. Eldred,et al.  Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions , 2008 .

[19]  Xiaoping Du,et al.  Reliability analysis for hydrokinetic turbine blades , 2012 .

[20]  R. Rackwitz,et al.  A benchmark study on importance sampling techniques in structural reliability , 1993 .

[21]  Ruixing Wang,et al.  Time-Dependent Reliability Modeling and Analysis Method for Mechanics Based on Convex Process , 2015 .

[22]  Tom Dhaene,et al.  Performance study of multi-fidelity gradient enhanced kriging , 2015 .