Buckling modes in pantographic lattices

Abstract We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface.

[1]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[2]  P. Seppecher,et al.  Determination of the Closure of the Set of Elasticity Functionals , 2003 .

[3]  Francesco dell’Isola,et al.  A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics , 2015 .

[4]  Tomasz Lekszycki,et al.  Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients , 2015 .

[5]  Francesco dell’Isola,et al.  Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence , 2015 .

[6]  Steven R. Clarke Net Shape Woven Fabrics—2D and 3D , 2000 .

[7]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[8]  Francesco dell’Isola,et al.  Pattern formation in the three-dimensional deformations of fibered sheets , 2015 .

[9]  Giuseppe Piccardo,et al.  On the effect of twist angle on nonlinear galloping of suspended cables , 2009 .

[10]  Angelo Luongo,et al.  Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures , 2001 .

[11]  Timothy J. Healey,et al.  Injective weak solutions in second-gradient nonlinear elasticity , 2009 .

[12]  Leopoldo Greco,et al.  An isogeometric implicit G1 mixed finite element for Kirchhoff space rods , 2016 .

[13]  David J. Steigmann,et al.  Equilibrium of elastic nets , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[14]  P. Seppecher,et al.  Cauchy Tetrahedron Argument Applied to Higher Contact Interactions , 2015, Archive for Rational Mechanics and Analysis.

[15]  Luca Placidi,et al.  Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps , 2013, 1309.1722.

[16]  Paul Steinmann,et al.  Isogeometric analysis of 2D gradient elasticity , 2011 .

[17]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[18]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[19]  Gabriel Wittum,et al.  Evolution of a fibre-reinforced growing mixture , 2009 .

[20]  N. Morozov,et al.  On free oscillations of an elastic solids with ordered arrays of nano-sized objects , 2015 .

[21]  H. Altenbach,et al.  Acceleration waves and ellipticity in thermoelastic micropolar media , 2010 .

[22]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[23]  P. Fischer,et al.  On the C1 continuous discretization of non‐linear gradient elasticity: A comparison of NEM and FEM based on Bernstein–Bézier patches , 2010 .

[24]  Krishna Garikipati,et al.  Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains , 2014, 1404.0094.

[25]  H. Altenbach,et al.  Cosserat-Type Shells , 2013 .

[26]  J. C. Currie,et al.  Weak continuity and variational problems of arbitrary order , 1981 .

[27]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[28]  B. D. Coleman Necking and drawing in polymeric fibers under tension , 1983 .

[29]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[30]  Francesco dell’Isola,et al.  Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response , 2015 .

[31]  Nicola Luigi Rizzi,et al.  The effects of warping on the postbuckling behaviour of thin-walled structures , 2011 .

[32]  Philip G. Harrison,et al.  Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh , 2016 .

[33]  B. D. Coleman,et al.  On the rheology of cold drawing. I. Elastic materials , 1988 .

[34]  Emilio Turco,et al.  A three-dimensional B-spline boundary element , 1998 .

[35]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[36]  Stefano Gabriele,et al.  On the Imperfection Sensitivity ofThin-Walled Frames , 2012 .

[37]  Luca Placidi,et al.  A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model , 2016 .

[38]  Stefano Gabriele,et al.  Initial postbuckling behavior of thin-walled frames under mode interaction , 2013 .

[39]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[40]  Bernard Haussy,et al.  Discrete models of woven structures. Macroscopic approach , 2007 .

[41]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[42]  H. Altenbach,et al.  On the linear theory of micropolar plates , 2009 .

[43]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[44]  Gabriel Wittum,et al.  Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials , 2012 .

[45]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[46]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[47]  N. Rizzi,et al.  On the Imperfection Sensitivity of Thin-Walled Frames , 2012 .

[48]  Francesco dell’Isola,et al.  Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching , 2015 .

[49]  Luca Placidi,et al.  A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices , 2014 .

[50]  J. Ganghoffer,et al.  Equivalent mechanical properties of auxetic lattices from discrete homogenization , 2012 .

[51]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .