Update on Na-based battery materials. A growing research path

This work presents an up-to-date information on Na-based battery materials. On the one hand, it explores the feasibility of two novel energy storage systems: Na-aqueous batteries and Na–O2 technology. On the other hand, it summarises new advances on non-aqueous Na-ion systems. Although all of them can be placed under the umbrella of Na-based systems, aqueous and oxygen-based batteries are arising technologies with increasing significance in energy storage research, while non-aqueous sodium-ion technology has become one of the most important research lines in this field. These systems meet different requirements of energy storage: Na-aqueous batteries will have a determining role as a low cost and safer technology; Na–O2 systems can be the key technology to overcome the need for high energy density storage devices; and non-aqueous Na-ion batteries have application in the field of stationary energy storage.

[1]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[2]  A. Hémon-Ribaud,et al.  Phase Transitions in the Na3M2(PO4)2F3 Family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies , 1999 .

[3]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[4]  S. Dou,et al.  Reduced graphene oxide with superior cycling stability and rate capability for sodium storage , 2013 .

[5]  A. Goñi,et al.  High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .

[6]  Palani Balaya,et al.  Na2Ti3O7: an intercalation based anode for sodium-ion battery applications , 2013 .

[7]  Byeong-Su Kim,et al.  Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries , 2011 .

[8]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[9]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[10]  Xiaogang Han,et al.  Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. , 2012, Nano letters.

[11]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[12]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[13]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[14]  H. Ahn,et al.  SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. , 2013, Chemical communications.

[15]  Yuki Yamada,et al.  Observation of the highest Mn3+/Mn2+ redox potential of 4.45 V in a Li2MnP2O7 pyrophosphate cathode , 2012 .

[16]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[17]  Yuwon Park,et al.  Trigonal Na4Ti5O12 Phase as an Intercalation Host for Rechargeable Batteries , 2012 .

[18]  Pierre Kubiak,et al.  High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x , 2012 .

[19]  Xiqian Yu,et al.  Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries , 2013 .

[20]  J. Yamaki,et al.  Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds , 2013 .

[21]  John B. Goodenough,et al.  Li2NaV2(PO4)3: A 3.7 V Lithium-Insertion Cathode with the Rhombohedral NASICON Structure , 2001 .

[22]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[23]  Qian Sun,et al.  Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries , 2012 .

[24]  Limin Zhu,et al.  An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries , 2012 .

[25]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[26]  Pierre Kubiak,et al.  Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4 , 2012 .

[27]  Wei He,et al.  Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries , 2013 .

[28]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[29]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[30]  Huilin Pan,et al.  Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery , 2012 .

[31]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[32]  Yong Yang,et al.  Sol–gel synthesis and electrochemical properties of fluorophosphates Na2Fe1−xMnxPO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery , 2011 .

[33]  J. Gopalakrishnan,et al.  Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .

[34]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[35]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[36]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[37]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[38]  T. Komatsu,et al.  Triclinic Na2−xFe1+x/2P2O7/C glass-ceramics with high current density performance for sodium ion battery , 2013 .

[39]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[40]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[41]  B. Hwang,et al.  Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries , 2009 .

[42]  Hongmin Zhu,et al.  Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries , 2013 .

[43]  Lixia Yuan,et al.  Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance , 2013 .

[44]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[45]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[46]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[47]  A. Yamada,et al.  Fe3+/Fe2+ Redox Couple Approaching 4 V in Li2–x(Fe1–yMny)P2O7 Pyrophosphate Cathodes , 2012 .

[48]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[49]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[50]  J. Zhu,et al.  Effect of Microstructure on the Performance of a Zn-Al Alloy Anode for Zn-Air Battery Application , 2012 .

[51]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[52]  J. Choi,et al.  Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. , 2013, Journal of the American Chemical Society.

[53]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[54]  O. Yakubovich,et al.  The mixed anionic framework in the structure of Na2{MnF[PO4]} , 1997 .

[55]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[56]  J. Fergus Ion transport in sodium ion conducting solid electrolytes , 2012 .

[57]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[58]  R. Ruffo,et al.  Layered Na(0.71)CoO(2): a powerful candidate for viable and high performance Na-batteries. , 2012, Physical chemistry chemical physics : PCCP.

[59]  Pierre Kubiak,et al.  Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3−2x/C as cathode for sodium-ion batteries , 2013 .

[60]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[61]  Hui Li,et al.  Highly durable and active non-precious air cathode catalyst for zinc air battery , 2011 .

[62]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[63]  Zhaoping Liu,et al.  An effective method for preparing uniform carbon coated nano-sized LiFePO4 particles , 2011 .

[64]  R. Dominko,et al.  A3V2(PO4)3 (A = Na or Li) probed by in situ X-ray absorption spectroscopy , 2012 .

[65]  Ayyakkannu Manivannan,et al.  Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes , 2013 .

[66]  J. Tarascon,et al.  Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes , 2012 .

[67]  J. Dahn,et al.  Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange , 1999 .

[68]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[69]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[70]  Martin Winter,et al.  Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material , 2013 .

[71]  Dong-Hwa Seo,et al.  A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes. , 2012, Physical chemistry chemical physics : PCCP.

[72]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[73]  S. Okada,et al.  Cathode properties of Na3M2(PO4) 2F3 [M = Ti, Fe, V] for sodium-ion batteries , 2013 .

[74]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[75]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[76]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[77]  Linda F. Nazar,et al.  Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni)† , 2010 .

[78]  J. Tarascon,et al.  Study of the potentiometric response towards sodium ions of Na0.44−xMnO2 for the development of selective sodium ion sensors , 2007 .

[79]  Hongmin Zhu,et al.  Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. , 2013, Nanoscale.

[80]  Ramazan Kahraman,et al.  Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study , 2013 .

[81]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[82]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[83]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[84]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[85]  G. F. Ortiz,et al.  Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries , 2013 .

[86]  Qian Sun,et al.  High capacity Sb2O4 thin film electrodes for rechargeable sodium battery , 2011 .

[87]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[88]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[89]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[90]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[91]  Jean-Marie Tarascon,et al.  Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5 , 2006 .

[92]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[93]  Christopher S. Johnson,et al.  Intercalation of Sodium Ions into Hollow Iron Oxide Nanoparticles , 2013 .

[94]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[95]  Xin-bo Zhang,et al.  Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. , 2013, ChemSusChem.

[96]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[97]  C. Delmas,et al.  O'3-Na(x)VO2 system: a superstructure for Na(1/2)VO2. , 2012, Inorganic chemistry.

[98]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[99]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[100]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[101]  Shinichi Komaba,et al.  A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion Batteries , 2012 .

[102]  Shinji Inazawa,et al.  Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide , 2012 .

[103]  Qian Sun,et al.  An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. , 2013, Chemical communications.

[104]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[105]  Shyue Ping Ong,et al.  Comparison of Small Polaron Migration and Phase Separation in Olivine LiMnPO₄ and LiFePO₄ using Hybrid Density Functional Theory , 2011 .

[106]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[107]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[108]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[109]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[110]  V. Ramar,et al.  A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. , 2013, Physical chemistry chemical physics : PCCP.

[111]  D. Aurbach,et al.  In Situ Tracking of Ion Insertion in Iron Phosphate Olivine Electrodes via Electrochemical Quartz Crystal Admittance , 2013 .

[112]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[113]  Yuliang Cao,et al.  Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries , 2013 .

[114]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[115]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[116]  A. Yamada,et al.  Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: a supersuperexchange-driven non-collinear antiferromagnet. , 2013, Inorganic chemistry.

[117]  Lynden A. Archer,et al.  Carbon dioxide assist for non-aqueous sodium-oxygen batteries , 2013 .

[118]  M. Armand,et al.  Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes , 2013 .

[119]  R. Huggins,et al.  Materials considerations related to sodium-based rechargeable cells for use above room temperature , 1990 .

[120]  Hui Xiong,et al.  Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. , 2012, ACS nano.

[121]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .