Reliable sweeps

We present a simple algorithm to generate a topology-preserving, error-bounded approximation of the outer boundary of the volume swept by a polyhedron along a parametric trajectory. Our approach uses a volumetric method that generates an adaptive volumetric grid, computes signed distance on the grid points, and extracts an isosurface from the distance field. In order to guarantee geometric and topological bounds, we present a novel sampling and front propagation algorithm for adaptive grid generation. We highlight the performance of our algorithm on many complex benchmarks that arise in geometric and solid modeling, motion planning and CNC milling applications. To the best of our knowledge, this is the first practical algorithm that can generate swept volume approximations with geometric and topological guarantees on complex polyhedral models swept along any parametric trajectory.

[1]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[2]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Ming C. Leu,et al.  The sweep-envelope differential equation algorithm and its application to NC machining verification , 1997, Comput. Aided Des..

[4]  Wei Hong,et al.  Dual contouring with topology-preserving simplification using enhanced cell representation , 2004, IEEE Visualization 2004.

[5]  Jean-Paul Laumond,et al.  Swept Volume approximation of polygon soups , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[6]  Jia-Guang Sun,et al.  The sweep-envelope differential equation algorithm for general deformed swept volumes , 2000, Comput. Aided Geom. Des..

[7]  Leif Kobbelt,et al.  Isosurface reconstruction with topology control , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[8]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[9]  Dinesh Manocha,et al.  Topology preserving surface extraction using adaptive subdivision , 2004, SGP '04.

[10]  Dinesh Manocha,et al.  Accurate Minkowski sum approximation of polyhedral models , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[11]  Karim Abdel-Malek,et al.  On the determination of starting points for parametric surface intersections , 1997, Comput. Aided Des..

[12]  Gershon Elber,et al.  Offsets, sweeps, and Minkowski sums , 1999, Comput. Aided Des..

[13]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[14]  Bernd Hamann,et al.  A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[15]  Horea T. Ilies,et al.  Classifying points for sweeping solids , 2008, Comput. Aided Des..

[16]  Dinesh Manocha,et al.  Fast swept volume approximation of complex polyhedral models , 2003, SM '03.

[17]  Gilles Bertrand,et al.  A three-dimensional holes closing algorithm , 1996, Pattern Recognit. Lett..

[18]  D. Cohen-Or,et al.  Interactive topology-aware surface reconstruction , 2007, ACM Trans. Graph..

[19]  Ming C. Leu,et al.  Geometric Representation of Swept Volumes with Application to Polyhedral Objects , 1990, Int. J. Robotics Res..

[20]  Peter K. Allen,et al.  Swept volumes and their use in viewpoint computation in robot work-cells , 1995, Proceedings. IEEE International Symposium on Assembly and Task Planning.

[21]  H. Pottmann,et al.  Swept Volumes , 2004 .

[22]  William E. Lorensen,et al.  Implicit modeling of swept surfaces and volumes , 1994, Proceedings Visualization '94.

[23]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[24]  Karim Abdel-Malek,et al.  Multiple sweeping using the Denavit-Hartenberg representation method , 1999, Comput. Aided Des..

[25]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000 .

[26]  Gregory M. Nielson,et al.  Dual marching cubes , 2004, IEEE Visualization 2004.

[27]  Soon-Bum Lim,et al.  Approximate General Sweep Boundary of a 2D Curved Object, , 1993, CVGIP Graph. Model. Image Process..

[28]  Sigal Raab,et al.  Controlled perturbation for arrangements of polyhedral surfaces with application to swept volumes , 1999, SCG '99.

[29]  Gil Shklarski,et al.  Interactive topology-aware surface reconstruction , 2007, ACM Trans. Graph..

[30]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[31]  Jarek Rossignac,et al.  Boundary of the volume swept by a free-form solid in screw motion , 2007, Comput. Aided Des..

[32]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[33]  Xiuzi Ye,et al.  Approximate the swept volume of revolutions along curved trajectories , 2007, Symposium on Solid and Physical Modeling.

[34]  Ralph R. Martin,et al.  Sweeping of three-dimensional objects , 1990, Comput. Aided Des..

[35]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[36]  Jean-Daniel Boissonnat,et al.  Isotopic Implicit Surface Meshing , 2004, STOC '04.

[37]  Afonso Paiva,et al.  Robust adaptive meshes for implicit surfaces , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.