Carbon mitigation by the energy crop, Miscanthus

Clifton-Brown, J. C., Breuer, J., Jones, M. B. (2007). Carbon mitigation by the energy crop, Miscanthus. Global Change Biology. 13 (11), 2296-2307 Sponsorship: EU JOUB-0069 / AIR-CT92-0294 RAE2008

[1]  David S. Powlson,et al.  Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture , 2000 .

[2]  T. Yoneyama,et al.  Carbon source of humic substances in some Japanese volcanic ash soils determined by carbon stable isotopic ratio, δ13C , 2004 .

[3]  Uffe Jørgensen,et al.  Environment and harvest time affects the combustion qualities of Miscanthus genotypes , 2003 .

[4]  Nigel W. Arnell,et al.  A simple water balance model for the simulation of streamflow over a large geographic domain , 1999 .

[5]  John Clifton-Brown,et al.  Miscanthus : European experience with a novel energy crop , 2000 .

[6]  Kristian Kristensen,et al.  Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance , 2004 .

[7]  I. Yamada,et al.  Growth and chemical composition of Japanese pampas grass (Miscanthus sinensis) with special reference to the formation of dark-colored Andisols in northeastern Japan , 1990 .

[8]  Chris S. M. Turney,et al.  Construction of a 1961-1990 European climatology for climate change modelling and impact applications , 1995 .

[9]  M. Cannell,et al.  Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK , 2003 .

[10]  Trevor R. Hodkinson,et al.  Nomenclature of Miscanthus x giganteus (Poaceae) , 2001 .

[11]  André Mariotti,et al.  Natural 13C abundance as a tracer for studies of soil organic matter dynamics , 1987 .

[12]  S. Anthony,et al.  Identifying the yield potential of Miscanthus x giganteus: an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales , 2004 .

[13]  David S. Powlson,et al.  Biofuels and other approaches for decreasing fossil fuel emissions from agriculture , 2005 .

[14]  H. Koizumi,et al.  Carbon dynamics and budget in a Miscanthus sinensis grassland in Japan , 2004, Ecological Research.

[15]  MICHAEL B. Jones,et al.  Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2 , 2004 .

[16]  Andreas de Neergaard,et al.  Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. , 2004 .

[17]  P. Leinweber,et al.  Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter , 2001 .

[18]  W. K. Hicks,et al.  Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts , 2006 .

[19]  A. Kicherer,et al.  Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus , 1997 .

[20]  J. Clifton-Brown,et al.  Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions , 2004 .

[21]  Pete Smith How long before a change in soil organic carbon can be detected? , 2004 .

[22]  John Clifton-Brown,et al.  The modelled productivity of Miscanthus×giganteus (GREEF et DEU) in Ireland. , 2000 .

[23]  B. Witkowska-Walczak Hydrophysical characteristics and evaporation of Haplic Luvisol and Mollic Gleysol aggregates , 2003 .

[24]  Iris Lewandowski,et al.  Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production , 2003 .