A class of Gorenstein algebras and their dualities

In the recent paper"The Nakayama functor and its completion for Gorenstein algebras", a class of Gorenstein algebras over commutative noetherian rings was introduced, and duality theorems for various categories of representations were established. The manuscript on hand provides more context to the results presented in the aforementioned work, identifies new classes of Gorenstein algebras, and explores their behaviour under standard operations like taking tensor products and tilting.

[1]  Pierre-Guy Plamondon,et al.  A complete derived invariant for gentle algebras via winding numbers and Arf invariants , 2019, Selecta Mathematica.

[2]  Florian Eisele,et al.  Bijections of silting complexes and derived Picard groups , 2021, Journal of the London Mathematical Society.

[3]  Wassilij Gnedin Silting theory under change of rings , 2022, 2204.00608.

[4]  H. Krause Homological Theory of Representations , 2021 .

[5]  O. Iyama,et al.  Classifying subcategories of modules over Noetherian algebras , 2021, 2106.00469.

[6]  Yuriy A. Drozd,et al.  Rejection Lemma and Almost Split Sequences , 2020, Ukrainian Mathematical Journal.

[7]  J. Kujawa,et al.  Support varieties and modules of finite projective dimension for modular Lie superalgebras , 2019, Algebra & Number Theory.

[8]  R. Buchweitz Maximal Cohen–Macaulay Modules and Tate Cohomology , 2021, Mathematical Surveys and Monographs.

[9]  H. Krause,et al.  The Nakayama functor and its completion for Gorenstein algebras , 2020, Bulletin de la Société mathématique de France.

[10]  H. Krause,et al.  LOCAL DUALITY FOR THE SINGULARITY CATEGORY OF A FINITE DIMENSIONAL GORENSTEIN ALGEBRA , 2019, Nagoya Mathematical Journal.

[11]  Wassilij Gnedin Calabi-Yau properties of ribbon graph orders , 2019, 1908.08895.

[12]  S. Opper On auto-equivalences and complete derived invariants of gentle algebras , 2019, 1904.04859.

[13]  H. Krause,et al.  Local duality for representations of finite group schemes , 2016, Compositio Mathematica.

[14]  Vincent Pilaud,et al.  Non-kissing and non-crossing complexes for locally gentle algebras , 2018, 1807.04730.

[15]  Y. Drozd,et al.  Non-commutative nodal curves and derived tame algebras , 2018, 1805.05174.

[16]  Pierre-Guy Plamondon,et al.  A geometric model for the derived category of gentle algebras , 2018, 1801.09659.

[17]  Raphael Bennett-Tennenhaus Functorial filtrations for semiperfect generalisations of gentle algebras , 2017 .

[18]  Y. Drozd,et al.  On the derived categories of gentle and skew-gentle algebras: homological algebra and matrix problems , 2017, 1706.08358.

[19]  H. Krause,et al.  A categorification of non-crossing partitions , 2013, 1310.1907.

[20]  Martin Kalck Singularity categories of gentle algebras , 2012, 1207.6941.

[21]  Sefi Ladkani On Jacobian algebras from closed surfaces , 2012, 1207.3778.

[22]  F. Eisele p-Adic lifting problems and derived equivalences , 2011, 1102.1674.

[23]  K. Yamagata,et al.  Frobenius Algebras I: Basic Representation Theory , 2011 .

[24]  Greg Stevenson Support theory via actions of tensor triangulated categories , 2011, 1105.4692.

[25]  H. Krause,et al.  Stratifying triangulated categories , 2009, 0910.0642.

[26]  L. Avramov,et al.  Reflexivity and rigidity for complexes, I: Commutative rings , 2009, 0904.4695.

[27]  H. Thomas,et al.  Noncrossing partitions and representations of quivers , 2006, Compositio Mathematica.

[28]  L. Avramov,et al.  REFLEXIVITY AND RIGIDITY FOR COMPLEXES , 2009 .

[29]  B. Keller Calabi–Yau triangulated categories , 2008 .

[30]  M. Hoshino,et al.  Derived equivalences and Gorenstein algebras , 2007 .

[31]  H. Krause,et al.  Local cohomology and support for triangulated categories , 2007, math/0702610.

[32]  I. Reiten,et al.  Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras , 2006, math/0605136.

[33]  W. Dwyer,et al.  Duality in algebra and topology , 2005, math/0510247.

[34]  B. Guillou,et al.  Algebraic K-theory , 2020, Oberwolfach Reports.

[35]  Karin Erdmann Miles Holloway Nicole Snashall Oyvind Solb Taillefer SUPPORT VARIETIES FOR SELFINJECTIVE ALGEBRAS , 2003, math/0311311.

[36]  M. Bergh Non-commutative Crepant Resolutions , 2002, math/0211064.

[37]  Peter Jørgensen,et al.  Gorenstein differential graded algebras , 2003 .

[38]  Takayoshi Wakamatsu On Frobenius algebras , 2003 .

[39]  Y. Drozd,et al.  Derived categories of nodal algebras , 2003, math/0307060.

[40]  D. Orlov,et al.  Triangulated categories of singularities and D-branes in Landau-Ginzburg models , 2003, math/0302304.

[41]  Idun Reiten,et al.  Noetherian hereditary abelian categories satisfying Serre duality , 2002 .

[42]  J. Rickard Triangulated categories in the modular representation theory of finite groups , 1998 .

[43]  A. Zimmermann,et al.  Tilting hereditary orders , 1996 .

[44]  E. Green,et al.  The cohomology ring of a monomial algebra , 1994 .

[45]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[46]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[47]  A. Neeman,et al.  The chromatic tower for D(R) , 1992 .

[48]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[49]  J. Rickard Lifting theorems for tilting complexes , 1991 .

[50]  Jeremy Rickard,et al.  Derived Equivalences As Derived Functors , 1991 .

[51]  I. Reiten,et al.  Cohen-Macaulay and Gorenstein Artin algebras , 1991 .

[52]  Jeremy Rickard,et al.  Morita Theory for Derived Categories , 1989 .

[53]  K. Roggenkamp Auslander—Reiten species of Bäckström orders , 1983 .

[54]  A. Wiedemann Brauer-thrall I for orders and its application to orders with loops in their Auslander-Reiten graph , 1981 .

[55]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[56]  P. Roberts Homological invariants of modules over commutative rings , 1980 .

[57]  C. Ringel,et al.  Diagrammatic methods in the representation theory of orders , 1979 .

[58]  H. Foxby Bounded complexes of flat modules , 1979 .

[59]  I. Reiner,et al.  Integral representations and diagrams. , 1978 .

[60]  R. Fossum,et al.  Minimal injective resolutions with applications to dualizing modules and gorenstein modules , 1975 .

[61]  E. Formanek Faithful Noetherian modules , 1973 .

[62]  J. Drozd,et al.  ON QUASI-BASS ORDERS , 1972 .

[63]  Abraham Zaks Injective dimension of semi-primary rings , 1969 .

[64]  Hyman Bass,et al.  On the ubiquity of Gorenstein rings , 1963 .

[65]  P. Gabriel,et al.  Des catégories abéliennes , 1962 .

[66]  D. G. Higman On isomorphisms of orders. , 1959 .

[67]  J. Weier Un théorème d'intersection , 1957 .

[68]  C. Geiss,et al.  Gentle algebras are Gorenstein , 2022 .

[69]  Masayoshi Nagata,et al.  Local Rings , 2022 .