Stochastic processes in estimation theory

We describe the role of various stochastic processes, especially martingales and related concepts, in estimation theory. It is shown, in the simplest context, that in nonlinear estimation theory martingales play the same fundamental role as uncorrelation and white noise do in linear estimation.

[1]  P. Varaiya,et al.  Martingales on Jump Processes. I: Representation Results , 1975 .

[2]  P. Meyer Martingales and Stochastic Integrals I , 1972 .

[3]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part III: Nonlinear estimation in white Gaussian noise , 1971 .

[4]  Wilbur B. Davenport Probability and Random Processes: An Introduction for Applied Scientists and Engineers , 1975 .

[5]  P. Varaiya,et al.  Optimal Control of Jump Processes , 1977 .

[6]  H. Kunita,et al.  On Square Integrable Martingales , 1967, Nagoya Mathematical Journal.

[7]  P. Varaiya,et al.  Martingales on Jump Processes. II: Applications , 1975 .

[8]  J. Doob Stochastic processes , 1953 .

[9]  C. Dellacherie Capacités et processus stochastiques , 1972 .

[10]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[11]  Thomas Kailath,et al.  The modeling of randomly modulated jump processes , 1975, IEEE Trans. Inf. Theory.

[12]  T. Kailath A Note on Least Squares Estimation by the Innovations Method , 1972 .

[13]  P. Meyer Decomposition of supermartingales: The uniqueness theorem , 1963 .

[14]  J. H. Schuppen Filtering, Prediction and Smoothing for Counting Process Observations, a Martingale Approach , 1977 .

[15]  T. Kailath,et al.  Radon-Nikodym Derivatives with Respect to Measures Induced by Discontinuous Independent-Increment Processes , 1975 .

[16]  E. Wong Representation of Martingales, Quadratic Variation and Applications , 1971 .

[17]  Thomas Kailath,et al.  A general likelihood-ratio formula for random signals in Gaussian noise , 1969, IEEE Trans. Inf. Theory.

[18]  T. Kailath,et al.  A further note on innovations, martingales and nonlinear estimation , 1973, CDC 1973.

[19]  Gerald S. Shedler,et al.  Empirically derived micromodels for sequences of page exceptions , 1973 .

[20]  C. Doléans-Dade,et al.  Intégrales stochastiques par rapport aux martingales locales , 1970 .

[21]  Eugene Wong,et al.  Recent progress in stochastic processes-A survey , 1973, IEEE Trans. Inf. Theory.

[22]  Thomas Kailath,et al.  Nonlinear filtering with counting observations , 1975, IEEE Trans. Inf. Theory.

[23]  P. Meyer Sur un probleme de filtration , 1973 .

[24]  T. Kailath Some extensions of the innovations theorem , 1971 .

[25]  Mark H. A. Davis The application of nonlinear filtering to fault detection in linear systems , 1975 .

[26]  Adrian Segall,et al.  Dynamic file assignment in a computer network , 1976 .

[27]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[28]  H. Kunita,et al.  Stochastic differential equations for the non linear filtering problem , 1972 .