Hybrid Density Functional Study of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4 for the Intermediate Band Solar Cells

[1]  Y. Arakawa,et al.  Detailed balance limit of the efficiency of multilevel intermediate band solar cells , 2011 .

[2]  T. Wada,et al.  Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions , 2015 .

[3]  J. Chan,et al.  Single crystal growth by self-flux method of the mixed valence gold halides Cs2[AuIX2][AuIIIX4] (X=Br,I) , 2011, 1111.7017.

[4]  Xiaoli Zhang,et al.  The investigation of transition metal doped CuGaS2 for promising intermediate band materials , 2014 .

[5]  C. Teske Darstellung und Kristallstruktur von Silber-Barium-Thiogermanat(IV). Ag2BaGeS4 / Preparation and Crystal Structure of Silver-Barium-Thiogermanate(IV). Ag2BaGeS4 , 1979 .

[6]  Mariette Hellenbrandt,et al.  The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .

[7]  Xiao-jun Liu,et al.  Electronic structure of the gold complexes Cs 2 Au 2 X 6 ( X =I, Br, and Cl) , 1999 .

[8]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[9]  M. Green Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells , 2001 .

[10]  H. Fjellvåg,et al.  Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba). , 2011, Physical chemistry chemical physics : PCCP.

[11]  H. Fjellvåg,et al.  First-principles study of structural stability, dynamical and mechanical properties of Li2FeSiO4 polymorphs , 2016, 1611.04350.

[12]  I. Aguilera,et al.  Enhancement of optical absorption in Ga-chalcopyrite-based intermediate-band materials for high efficiency solar cells , 2010 .

[13]  P. Vajeeston,et al.  A first-principle study of the electronic, mechanical and optical properties of inorganic perovskite Cs2SnI6 for intermediate-band solar cells , 2018 .

[14]  K. Ozawa,et al.  Inelastic neutron scattering study of the spin-gap cuprate β-AgCuPO 4 , 2007 .

[15]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[16]  I. Aguilera,et al.  Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles , 2008 .

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[19]  M. Quarton,et al.  Proprietes de l'ion Cu2+ dans la structure de AgCuPO4-β , 1983 .

[20]  W. M. Temmerman,et al.  Electronic Structure and Elastic Properties of Strongly Correlated Metal Oxides from First Principles: LSDA + U, SIC‐LSDA and EELS Study of UO2 and NiO , 1998 .

[21]  Antonio Luque,et al.  Understanding intermediate-band solar cells , 2012, Nature Photonics.

[22]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[23]  Georg Kresse,et al.  Dielectric properties and excitons for extended systems from hybrid functionals , 2008 .

[24]  P. Vajeeston,et al.  Computational Modeling of Novel Bulk Materials for the Intermediate-Band Solar Cells , 2017, ACS omega.

[25]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[26]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[27]  Antonio Luque,et al.  A metallic intermediate band high efficiency solar cell , 2001 .

[28]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[29]  Tomah Sogabe,et al.  Intermediate band solar cells: Recent progress and future directions , 2015 .

[30]  Chongyin Yang,et al.  Cr incorporation in CuGaS2 chalcopyrite: A new intermediate‐band photovoltaic material with wide‐spectrum solar absorption , 2013 .

[31]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[32]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[33]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[34]  N. Kojima,et al.  A Three‐Dimensional Iodo‐Bridged Mixed‐Valence Gold(I, III) Compound, Cs2AuIAuIIII6 , 1997 .

[35]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[36]  J. Conesa,et al.  Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties. , 2008, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  E. Gaudin,et al.  Comparison of the crystal structures and magnetic properties of the low- and high-temperature forms of AgCuPO4: crystal structure determination, magnetic susceptibility measurements, and spin dimer analysis. , 2006, Inorganic chemistry.

[39]  Yongsheng Zhang,et al.  The group VA element non-compensated n–p codoping in CuGaS2 for intermediate band materials , 2016 .