Hybrid Density Functional Study of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4 for the Intermediate Band Solar Cells
暂无分享,去创建一个
Murugesan Rasukkannu | Dhayalan Velauthapillai | Ponniah Vajeeston | P. Vajeeston | D. Velauthapillai | Murugesan Rasukkannu
[1] Y. Arakawa,et al. Detailed balance limit of the efficiency of multilevel intermediate band solar cells , 2011 .
[2] T. Wada,et al. Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions , 2015 .
[3] J. Chan,et al. Single crystal growth by self-flux method of the mixed valence gold halides Cs2[AuIX2][AuIIIX4] (X=Br,I) , 2011, 1111.7017.
[4] Xiaoli Zhang,et al. The investigation of transition metal doped CuGaS2 for promising intermediate band materials , 2014 .
[5] C. Teske. Darstellung und Kristallstruktur von Silber-Barium-Thiogermanat(IV). Ag2BaGeS4 / Preparation and Crystal Structure of Silver-Barium-Thiogermanate(IV). Ag2BaGeS4 , 1979 .
[6] Mariette Hellenbrandt,et al. The Inorganic Crystal Structure Database (ICSD)—Present and Future , 2004 .
[7] Xiao-jun Liu,et al. Electronic structure of the gold complexes Cs 2 Au 2 X 6 ( X =I, Br, and Cl) , 1999 .
[8] Isao Tanaka,et al. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .
[9] M. Green. Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells , 2001 .
[10] H. Fjellvåg,et al. Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba). , 2011, Physical chemistry chemical physics : PCCP.
[11] H. Fjellvåg,et al. First-principles study of structural stability, dynamical and mechanical properties of Li2FeSiO4 polymorphs , 2016, 1611.04350.
[12] I. Aguilera,et al. Enhancement of optical absorption in Ga-chalcopyrite-based intermediate-band materials for high efficiency solar cells , 2010 .
[13] P. Vajeeston,et al. A first-principle study of the electronic, mechanical and optical properties of inorganic perovskite Cs2SnI6 for intermediate-band solar cells , 2018 .
[14] K. Ozawa,et al. Inelastic neutron scattering study of the spin-gap cuprate β-AgCuPO 4 , 2007 .
[15] A. Luque,et al. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .
[16] I. Aguilera,et al. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles , 2008 .
[17] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[18] J. Zaanen,et al. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.
[19] M. Quarton,et al. Proprietes de l'ion Cu2+ dans la structure de AgCuPO4-β , 1983 .
[20] W. M. Temmerman,et al. Electronic Structure and Elastic Properties of Strongly Correlated Metal Oxides from First Principles: LSDA + U, SIC‐LSDA and EELS Study of UO2 and NiO , 1998 .
[21] Antonio Luque,et al. Understanding intermediate-band solar cells , 2012, Nature Photonics.
[22] Gustavo E Scuseria,et al. Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.
[23] Georg Kresse,et al. Dielectric properties and excitons for extended systems from hybrid functionals , 2008 .
[24] P. Vajeeston,et al. Computational Modeling of Novel Bulk Materials for the Intermediate-Band Solar Cells , 2017, ACS omega.
[25] H. Queisser,et al. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .
[26] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[27] Antonio Luque,et al. A metallic intermediate band high efficiency solar cell , 2001 .
[28] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[29] Tomah Sogabe,et al. Intermediate band solar cells: Recent progress and future directions , 2015 .
[30] Chongyin Yang,et al. Cr incorporation in CuGaS2 chalcopyrite: A new intermediate‐band photovoltaic material with wide‐spectrum solar absorption , 2013 .
[31] I. Tanaka,et al. First principles phonon calculations in materials science , 2015, 1506.08498.
[32] S. Pugh. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .
[33] R. Hill. The Elastic Behaviour of a Crystalline Aggregate , 1952 .
[34] N. Kojima,et al. A Three‐Dimensional Iodo‐Bridged Mixed‐Valence Gold(I, III) Compound, Cs2AuIAuIIII6 , 1997 .
[35] F. Bechstedt,et al. Linear optical properties in the projector-augmented wave methodology , 2006 .
[36] J. Conesa,et al. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties. , 2008, Physical review letters.
[37] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[38] E. Gaudin,et al. Comparison of the crystal structures and magnetic properties of the low- and high-temperature forms of AgCuPO4: crystal structure determination, magnetic susceptibility measurements, and spin dimer analysis. , 2006, Inorganic chemistry.
[39] Yongsheng Zhang,et al. The group VA element non-compensated n–p codoping in CuGaS2 for intermediate band materials , 2016 .