The Thermal-Hydraulic Impact of Delta-Wing Vortex Generators on the Performance of a Plain-Fin-and-Tube Heat Exchanger

This paper reports on experiments to evaluate the effectiveness of delta-wing vortex generators applied to fin-and-tube heat exchangers. For air flowing at Reynolds numbers from about 700 to 2300, Colburn j and friction factor f data are obtained for a conventional refrigerator evaporator with and without a single row of delta-wing vortex generators placed at the inlet face of the test heat exchanger. Colburn j factor enhancements up to 31% over the baseline were obtained, without any pressure-drop penalties. The data confirm the promise for this method of heat transfer augmentation in plain-fin-and-tube heat exchanger applications, and provide a basis for improving heat exchanger performance.

[1]  Shantanu Biswas,et al.  Generation of Longitudinal Streamwise Vortices—A Device for Improving Heat Exchanger Design , 1994 .

[2]  Gautam Biswas,et al.  Heat transfer enhancement in fin-tube heat exchangers by winglet type vortex generators , 1994 .

[3]  M. Fiebig,et al.  Vortices and heat transfer : results of a DFG-supported research group , 1998 .

[4]  M. Fiebig,et al.  Heat transfer enhancement of a finned oval tube with punched longitudinal vortex generators in-line , 1998 .

[5]  T. V. Jones,et al.  HEAT TRANSFER ENHANCEMENT USING VORTEX GENERATORS , 1982 .

[6]  J. D. Domingos Analysis of complex assemblies of heat exchangers , 1969 .

[7]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[8]  M. Fiebig,et al.  Experimental investigations of heat transfer enhancement and flow losses in a channel with double rows of longitudinal vortex generators , 1993 .

[9]  A. Jacobi,et al.  The Effect of Streamwise Vortices on the Frost Growth Rate in Developing Laminar Channel Flows , 1999 .

[10]  M. Fiebig Vortex Generators for Compact Heat Exchangers , 1995 .

[11]  M. Fiebig Vortices, Generators and Heat Transfer , 1998 .

[12]  Martin Fiebig,et al.  Heat transfer enhancement and drag by longitudinal vortex generators in channel flow , 1991 .

[13]  U. Brockmeier,et al.  Performance evaluation of a vortex generator heat transfer surface and comparison with different high performance surfaces , 1993 .

[14]  Evaporator Calorimeter: The Study of Overall Heat Transfer Performance , 1996 .

[15]  Gautam Biswas,et al.  Numerical Investigations on Enhancement of Heat Transfer in a Compact Fin-and-Tube Heat Exchanger Using Delta Winglet Type Vortex Generators , 1999 .

[16]  Anthony M. Jacobi,et al.  Evaluating the potential of vortex-enhanced evaporator performance for refrigeration applications , 1996 .

[17]  Tong-Miin Liou,et al.  Heat Transfer and Fluid Flow in a Square Duct With 12 Different Shaped Vortex Generators , 2000 .

[18]  K. Torii,et al.  HEAT TRANSFER AUGMENTATION BY LONGITUDINAL VORTICES ROWS , 1993 .

[19]  Martin Fiebig,et al.  Wing-type vortex generators for fin-and-tube heat exchangers , 1993 .

[20]  M. Fiebig,et al.  Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators: A comparison of round and flat tubes , 1994 .

[21]  J. Scheiman,et al.  Considerations for the installation of honeycomb and screens to reduce wind-tunnel turbulence , 1981 .

[22]  R. Shah,et al.  Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress , 1995 .

[23]  Anthony M. Jacobi,et al.  Heat transfer enhancement by delta-wing vortex generators on a flat plate: Vortex interactions with the boundary layer , 1997 .

[24]  Gautam Biswas,et al.  Heat transfer in a channel with built-in wing-type vortex generators , 1992 .

[25]  M. Fiebig,et al.  Conjugate heat transfer of a finned tube. Part B: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators , 1995 .

[26]  M. Fiebig,et al.  Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators , 2000 .