Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point.

As shown in earlier work [Ahlers, J. Fluid Mech. 569, 409 (2006)], non-Oberbeck-Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Bénard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point, the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient beta(T). More precisely, it is the nonlinear T dependence of the density rho(T) in the buoyancy force that causes another type of NOB effect. We demonstrate this through a combination of experimental, numerical, and theoretical work, the last in the framework of the extended Prandtl-Blasius boundary-layer theory developed by Ahlers as cited above. The theory comes to its limits if the temperature dependence of the thermal expension coefficient beta(T) is significant. The measurements reported here cover the ranges 2.1<or similar to Pr<or similar to 3.9 and 5x10(9)<or similar to Ra<or similar to 2x10(12) and are for cylindrical samples of aspect ratios 1.0 and 0.5.

[1]  P. Tong,et al.  Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Fourier Théorie analytique de la chaleur , 2009 .

[3]  Sakurai,et al.  Thermal conductivity of the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Detlef Lohse,et al.  Non-oberbeck-boussinesq effects in gaseous Rayleigh-Bénard convection. , 2007, Physical review letters.

[5]  Katepalli R. Sreenivasan,et al.  Turbulent convection at high Rayleigh numbers and aspect ratio 4 , 2006, Journal of Fluid Mechanics.

[6]  Leo P. Kadanoff,et al.  Turbulent heat flow: Structures and scaling , 2001 .

[7]  Non-Boussinesq effect: Thermal convection with broken symmetry , 1997 .

[8]  G. Ahlers,et al.  Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh-Bénard convection , 2007 .

[9]  Bajaj,et al.  Heat transport in turbulent rayleigh-Benard convection , 2000, Physical review letters.

[10]  Eric Brown,et al.  Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.

[11]  Roberto Verzicco,et al.  Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell , 2003, Journal of Fluid Mechanics.

[12]  Eric Brown,et al.  Heat transport in turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom-plate conductivities , 2005 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Detlef Lohse,et al.  Scaling in thermal convection: a unifying theory , 2000, Journal of Fluid Mechanics.

[15]  Roberto Verzicco,et al.  Prandtl number effects in convective turbulence , 1999 .

[16]  J. Niemela,et al.  Confined turbulent convection , 2002, Journal of Fluid Mechanics.

[17]  D. Lohse,et al.  Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes , 2004 .

[18]  J. Niemela,et al.  The Use of Cryogenic Helium for Classical Turbulence: Promises and Hurdles , 2006 .

[19]  Olga Shishkina,et al.  Analysis of thermal dissipation rates in turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.

[20]  Sheng‐Qi Zhou,et al.  Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection. , 2002, Physical review letters.

[21]  G. Ahlers,et al.  Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Chao Sun,et al.  Particle image velocimetry measurement of the velocity field in turbulent thermal convection. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Eric D. Siggia,et al.  High Rayleigh Number Convection , 1994 .

[24]  G. Ahlers,et al.  Thermal expansion coefficient, scaling, and universality near the superfluid transition of /sup 4/He under pressure , 1976 .

[25]  S. Cioni,et al.  Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number , 1997, Journal of Fluid Mechanics.

[26]  G. Ahlers,et al.  Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. , 2001, Physical review letters.

[27]  S. Zaleski,et al.  Scaling of hard thermal turbulence in Rayleigh-Bénard convection , 1989, Journal of Fluid Mechanics.

[28]  D. Lohse,et al.  Thermal convection for large Prandtl numbers. , 2000, Physical review letters.

[29]  E. Brown,et al.  Large-scale circulation model for turbulent Rayleigh-Bénard convection. , 2007, Physical review letters.

[30]  E. Brown,et al.  Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection. , 2005, Physical review letters.

[31]  E. Brown,et al.  Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection , 2006, Journal of Fluid Mechanics.

[32]  Jackson R. Herring,et al.  Prandtl number dependence of Nusselt number in direct numerical simulations , 2000, Journal of Fluid Mechanics.

[33]  P. Tong,et al.  Large-scale velocity structures in turbulent thermal convection. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[35]  B. Chabaud,et al.  Prandtl and Rayleigh numbers dependences in Rayleigh-Bénard convection , 2002 .

[36]  Heat Transfer in Turbulent Rayleigh–Bénard Convection Below the Ultimate Regime , 2003, cond-mat/0307518.

[37]  F. Massaioli,et al.  Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number , 2005 .

[38]  Daniel G. Friend,et al.  Thermophysical Properties of Ethane , 1991 .

[39]  Detlef Lohse,et al.  Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol , 2007 .

[40]  B. Castaing,et al.  Side wall effects in Rayleigh Bénard experiments , 2001 .

[41]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[42]  R. Verzicco,et al.  Mean flow structure in thermal convection in a cylindrical cell of aspect ratio one half , 2006, Journal of Fluid Mechanics.

[43]  Denis Funfschilling,et al.  Plume motion and large-scale circulation in a cylindrical Rayleigh-Bénard cell. , 2004, Physical review letters.

[44]  Ciliberto,et al.  Large-scale flow properties of turbulent thermal convection. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Robert McDougall Kerr,et al.  Rayleigh number scaling in numerical convection , 1996, Journal of Fluid Mechanics.

[46]  Jacques Chaussy,et al.  Observation of the Ultimate Regime in Rayleigh-Bénard Convection , 1997 .

[47]  A. Thess,et al.  Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection , 2007, Journal of Fluid Mechanics.

[48]  A. Oberbeck,et al.  Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen , 1879 .

[49]  Eric Brown,et al.  Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less , 2004, Journal of Fluid Mechanics.

[50]  D. Lohse,et al.  Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  L. Howard,et al.  Large-scale flow generation in turbulent convection. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[52]  X. Shang,et al.  Measured local heat transport in turbulent Rayleigh-Bénard convection. , 2003, Physical review letters.

[53]  F. Toschi,et al.  Ultimate state of thermal convection. , 2002, Physical review letters.

[54]  L. Talbot,et al.  The Theory of Laminar Boundary Layers in Compressible Fluids , 1964 .

[55]  K. R. Sreenivasan,et al.  Turbulent convection at very high Rayleigh numbers , 1999, Nature.

[56]  B. Geurts,et al.  Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  F. Chillà,et al.  Turbulent Rayleigh–Bénard convection in gaseous and liquid He , 2001 .

[58]  The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.

[59]  R. Verzicco Effects of nonperfect thermal sources in turbulent thermal convection , 2004 .

[60]  R. Benzi Flow reversal in a simple dynamical model of turbulence. , 2004, Physical review letters.