Layouts of Expander Graphs

Bourgain and Yehudayoff recently constructed $O(1)$-monotone bipartite expanders. By combining this result with a generalisation of the unraveling method of Kannan, we construct 3-monotone bipartite expanders, which is best possible. We then show that the same graphs admit 3-page book embeddings, 2-queue layouts, 4-track layouts, and have simple thickness 2. All these results are best possible.

[1]  David R. Wood,et al.  Track Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[2]  Noga Alon,et al.  An elementary construction of constant-degree expanders , 2007, SODA '07.

[3]  Ravi Kannan,et al.  Unraveling k-page graphs , 1985, Inf. Control..

[4]  Petra Mutzel,et al.  The Thickness of Graphs: A Survey , 1998, Graphs Comb..

[5]  Sriram Venkata Pemmarju Exploring the powers of stacks and queues via graph layouts , 1992 .

[6]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[7]  Emilio Di Giacomo,et al.  Volume Requirements of 3D Upward Drawings , 2005, Graph Drawing.

[8]  Pat Morin,et al.  Layered Separators in Minor-Closed Families with Applications , 2013 .

[9]  David R. Wood,et al.  On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[10]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[11]  I. A. Dynnikov,et al.  Three-page approach to knot theory. Universal semigroup , 2000 .

[12]  Pat Morin,et al.  Crossings in Grid Drawings , 2014, Electron. J. Comb..

[13]  Endre Szemerédi,et al.  On nontrivial separators for k-page graphs and simulations by nondeterministic one-tape Turing machines , 1986, STOC '86.

[14]  David R. Wood,et al.  Stacks, Queues and Tracks: Layouts of Graph Subdivisions , 2005, Discret. Math. Theor. Comput. Sci..

[15]  Zeev Dvir,et al.  Towards dimension expanders over finite fields , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[16]  Arnold L. Rosenberg,et al.  Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..

[17]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[18]  Dániel Marx,et al.  On tree width, bramble size, and expansion , 2009, J. Comb. Theory, Ser. B.

[19]  David Eppstein,et al.  Journal of Graph Algorithms and Applications Geometric Thickness of Complete Graphs , 2022 .

[20]  Zdenek Dvorak,et al.  Sublinear separators, fragility and subexponential expansion , 2014, Eur. J. Comb..

[21]  Avi Wigderson,et al.  Monotone Expanders: Constructions and Applications , 2010, Theory Comput..

[22]  David R. Wood,et al.  Queue Layouts of Graph Products and Powers , 2005, Discret. Math. Theor. Comput. Sci..

[23]  David R. Wood,et al.  On the Book Thickness of k-Trees , 2011, Discret. Math. Theor. Comput. Sci..

[24]  Pat Morin,et al.  Layout of Graphs with Bounded Tree-Width , 2004, SIAM J. Comput..

[25]  Ivan Dynnikov,et al.  Three-page representation of links , 1998 .

[26]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion II. Algorithmic aspects , 2008, Eur. J. Comb..

[27]  Jaroslav Nesetril,et al.  Characterisations and examples of graph classes with bounded expansion , 2009, Eur. J. Comb..

[28]  Vida Dujmovic Graph layouts via layered separators , 2015, J. Comb. Theory, Ser. B.

[29]  David R. Wood,et al.  Graph Treewidth and Geometric Thickness Parameters , 2005, GD.

[30]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[31]  David Eppstein,et al.  Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth , 2014, GD.

[32]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[33]  J. Bourgain Expanders and dimensional expansion , 2009 .

[34]  Jirí Matousek,et al.  Bounded-Degree Graphs have Arbitrarily Large Geometric Thickness , 2006, Electron. J. Comb..

[35]  Peter W. Shor,et al.  On the pagenumber of planar graphs , 1984, STOC '84.

[36]  János Pach,et al.  On the Queue Number of Planar Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[37]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[38]  Endre Szemerédi,et al.  On 3-pushdown graphs with large separators , 1989, Comb..

[39]  Ivan Dynnikov,et al.  A New Way to Represent Links. One-Dimensional Formalism and Untangling Technology , 2001 .