Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications.

Polyglycerols (sometimes also called "polyglycidols") represent a class of highly biocompatible and multihydroxy-functional polymers that may be considered as a multifunctional analogue of poly(ethylene glycol) (PEG). Various architectures based on a polyglycerol scaffold are feasible depending on the monomer employed. While polymerization of glycidol leads to hyperbranched polyglycerols, the precisely defined linear analogue is obtained by using suitably protected glycidol as a monomer, followed by removal of the protective group in a postpolymerization step. This review summarizes the properties and synthetic approaches toward linear polyglycerols (linPG), which are at present mainly based on the application of ethoxyethyl glycidyl ether (EEGE) as an acetal-protected glycidol derivative. Particular emphasis is placed on the manifold functionalization strategies including, e.g., the synthesis of end-functional linPGs or multiheterofunctional modifications at the polyether backbone. Potential applications like bioconjugation and utilization as a component in degradable biomaterials or for diagnostics, in which polyglycerol acts as a promising PEG substitute are discussed. In the last section, the important role of linear polyglycerol as a macroinitiator or as a highly hydrophilic segment in block co- or terpolymers is highlighted.

[1]  I. R. Schmolka A review of block polymer surfactants , 1977 .

[2]  K. Matyjaszewski,et al.  Polymer science : a comprehensive reference , 2012 .

[3]  C. Jérôme,et al.  Catechols as versatile platforms in polymer chemistry , 2013 .

[4]  A. Dworak,et al.  Hydrophobically modified polyglycidol – the control of lower critical solution temperature , 2003 .

[5]  D. Jane,et al.  Synthesis of Simple Oxetanes Carrying Reactive 2-Substituents , 1987 .

[6]  H. Frey,et al.  Hetero-Multifunctional Poly(ethylene glycol) Copolymers with Multiple Hydroxyl Groups and a Single Terminal Functionality. , 2010, Macromolecular rapid communications.

[7]  D. Devine,et al.  Biocompatibility testing of branched and linear polyglycidol. , 2006, Biomacromolecules.

[8]  Min Jae Lee,et al.  Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. , 2012, Biomacromolecules.

[9]  R. Haag,et al.  Linear poly(methyl glycerol) and linear polyglycerol as potent protein and cell resistant alternatives to poly(ethylene glycol). , 2010, Chemistry, an Asian journal.

[10]  A. Dworak,et al.  Cytotoxicity, haematotoxicity and genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol‐block‐containing shells , 2006, Cell biology international.

[11]  H. Frey,et al.  Combining oxyanionic polymerization and click-chemistry: a general strategy for the synthesis of polyether polyol macromonomers , 2014 .

[12]  M. Antonietti,et al.  Synthesis of terpene–poly(ethylene oxide)s by t-BuP4-promoted anionic ring-opening polymerization , 2012 .

[13]  A. Dworak,et al.  Synthesis of High‐Molar Mass Arborescent‐Branched Polyglycidol via Sequential Grafting , 2001 .

[14]  M. Möller,et al.  Surfactant-Free Synthesis of Polystyrene Nanoparticles Using Oligoglycidol Macromonomers , 2012 .

[15]  H. Adler,et al.  Amphiphilic behaviour of poly(glycidol)-based macromonomers and its influence on homo-polymerisation in water and in water/benzene mixture , 2010 .

[16]  J. Gross,et al.  Phase Behavior of the System Linear Polyglycerol + Methanol + Carbon Dioxide , 2011 .

[17]  J. Byrd,et al.  Cholesterol as a bilayer anchor for PEGylation and targeting ligand in folate-receptor-targeted liposomes. , 2007, Journal of pharmaceutical sciences.

[18]  W. Tremel,et al.  Catechol-initiated polyethers: multifunctional hydrophilic ligands for PEGylation and functionalization of metal oxide nanoparticles. , 2013, Biomacromolecules.

[19]  M. Grinstaff,et al.  Synthesis of atactic and isotactic poly(1,2-glycerol carbonate)s: degradable polymers for biomedical and pharmaceutical applications. , 2013, Journal of the American Chemical Society.

[20]  H. Frey,et al.  Double-Hydrophilic Linear-Hyperbranched Block Copolymers Based on Poly(ethylene oxide) and Poly(glycerol) , 2008 .

[21]  M. Watanabe,et al.  Novel Thermosensitive Polyethers Prepared by Anionic Ring-Opening Polymerization of Glycidyl Ether Derivatives , 2002 .

[22]  Markus Biesalski,et al.  Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. , 2004, Chemistry.

[23]  Kwang-Woo Kim,et al.  Well‐Defined Functional Linear Aliphatic Diblock Copolyethers: A Versatile Linear Aliphatic Polyether Platform for Selective Functionalizations and Various Nanostructures , 2012 .

[24]  S. Słomkowski,et al.  Design of polyglycidol-containing microspheres for biomedical applications , 2012, Chemical Papers.

[25]  J. Kizhakkedathu,et al.  The size-dependent efficacy and biocompatibility of hyperbranched polyglycerol in peritoneal dialysis. , 2014, Biomaterials.

[26]  C. Tsvetanov,et al.  High-Molecular-Weight Poly(ethylene oxide) , 2012 .

[27]  M. Möller,et al.  Synthesis of multi-arm-star polyglycidols of different architecture grafted with polyacrylate side arms , 2009 .

[28]  A. Dworak,et al.  Hydrophilic and amphiphilic copolymers of 2,3-epoxypropanol-1 , 2000 .

[29]  H. Frey,et al.  Oligo(glycerol) methacrylate macromonomers. , 2011, Macromolecular rapid communications.

[30]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[31]  H. Frey,et al.  Polyether-Based Lipids Synthesized with an Epoxide Construction Kit: Multivalent Architectures for Functional Liposomes , 2013 .

[32]  M. Libera,et al.  Thermosensitive dendritic stars of tert-butyl-glycidylether and glycidol – Synthesis and encapsulation properties , 2011 .

[33]  A. Dworak,et al.  Synthesis and self-association in aqueous media of poly(ethylene oxide)/poly(ethyl glycidyl carbamate) amphiphilic block copolymers , 2006 .

[34]  S. Carlotti,et al.  Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization , 2013 .

[35]  H. Frey,et al.  Hyperbranched aliphatic polyether polyols , 2013 .

[36]  S. Penczek,et al.  Simultaneous introduction of phosphonic and carboxylic acid functions to hydroxylated macromolecules , 2004 .

[37]  H. Frey,et al.  Stereocomplex Formation in Polylactide Multiarm Stars and Comb Copolymers with Linear and Hyperbranched Multifunctional PEG , 2013 .

[38]  H. Frey,et al.  (1-Adamantyl)methyl glycidyl ether: a versatile building block for living polymerization. , 2014, Macromolecular rapid communications.

[39]  D. Brooks,et al.  In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells. , 2012, Biomaterials.

[40]  R. Haag,et al.  Study of single protein adsorption onto monoamino oligoglycerol derivatives: a structure-activity relationship. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[41]  Kazuo Tanaka,et al.  Poly(ethylene oxide) macromonomers. 7. Micellar polymerization in water , 1991 .

[42]  Marcelo Calderón,et al.  Dendritic Polyglycerols for Biomedical Applications , 2010, Advanced materials.

[43]  M. Chehimi,et al.  Preparation and optical properties of novel bioactive photonic crystals obtained from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres , 2011, Colloid and polymer science.

[44]  G. Lapienis Functionalized star-shaped polymers having PEO and/or polyglycidyl arms and their properties , 2009 .

[45]  Holger Frey,et al.  Multifunctional Poly(ethylene glycol)s. , 2011, Angewandte Chemie.

[46]  H. Keul,et al.  Poly(ether-ester) conjugates with enhanced degradation. , 2008, Biomacromolecules.

[47]  Byeong‐Su Kim,et al.  One-pot synthesis of linear-hyperbranched amphiphilic block copolymers based on polyglycerol derivatives and their micelles. , 2013, Biomacromolecules.

[48]  M. Chehimi,et al.  Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[49]  S. Carlotti,et al.  “Controlled” High-Speed Anionic Polymerization of Propylene Oxide Initiated by Alkali Metal Alkoxide/Trialkylaluminum Systems , 2004 .

[50]  Marcus Weber,et al.  Computational entropy estimation of linear polyether-modified surfaces and correlation with protein resistant properties of such surfaces , 2011 .

[51]  Yuichi Ohya,et al.  Synthesis of branched poly(lactide) using polyglycidol and thermal, mechanical properties of its solution-cast film , 2006 .

[52]  Wei Qiang,et al.  Polyglycerol coatings of glass vials for protein resistance. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[53]  T. Laurila,et al.  Reactive blending approach to modify spin-coated epoxy film: Part I. Synthesis and characterization of star-shaped poly(ε-caprolactone) , 2006 .

[54]  T. Benvegnu,et al.  Original Synthesis of Linear, Branched and Cyclic Oligoglycerol Standards , 2001 .

[55]  S. Moghimi,et al.  Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. , 2008, Molecular immunology.

[56]  Junlian Huang,et al.  One‐pot preparation of ABA‐type block‐graft copolymers via a combination of “click” chemistry with atom transfer nitroxide radical coupling reaction , 2010 .

[57]  H. Frey,et al.  Poly(1,2-glycerol carbonate): A Fundamental Polymer Structure Synthesized from CO2 and Glycidyl Ethers , 2013 .

[58]  A. Dworak,et al.  Synthesis, characterization and properties of functional star and dendritic block copolymers of ethylene oxide and glycidol with oligoglycidol branching units , 2009 .

[59]  H. Frey,et al.  Hyperbranched polyglycerol-based lipids via oxyanionic polymerization: toward multifunctional stealth liposomes. , 2010, Biomacromolecules.

[60]  J. Riffle,et al.  Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers , 2008 .

[61]  J. M. Harris,et al.  Effect of pegylation on pharmaceuticals , 2003, Nature Reviews Drug Discovery.

[62]  M. Möller,et al.  Polyglycidols with Two Orthogonal Protective Groups: Preparation, Selective Deprotection, and Functionalization , 2007 .

[63]  F. Schmid,et al.  Polydispersity and Molecular Weight Distribution of Hyperbranched Graft Copolymers via “Hypergrafting” of ABm Monomers from Polydisperse Macroinitiator Cores: Theory Meets Synthesis , 2013 .

[64]  H. Frey,et al.  Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. , 2010, Accounts of chemical research.

[65]  Kazunori Kataoka,et al.  PEGylated Nanoparticles for Biological and Pharmaceutical Applications , 2003 .

[66]  R. Wipf,et al.  Mesogen-Initiated Linear Polyglycerol Isomers: The Ordering Effect of a Single Cholesterol Unit on ``Sticky'' Isotropic Chains , 2011 .

[67]  Jörg Meyer,et al.  Poly(glycidyl amine) and Copolymers with Glycidol and Glycidyl Amine Repeating Units: Synthesis and Characterization , 2011 .

[68]  A. Lendlein,et al.  Surface functionalization of poly(ether imide) membranes with linear, methylated oligoglycerols for reducing thrombogenicity. , 2012, Macromolecular rapid communications.

[69]  S. Carlotti,et al.  Controlled Polymerization of Glycidyl Methyl Ether Initiated by Onium Salt/Triisobutylaluminum and Investigation of the Polymer LCST , 2007 .

[70]  M. Möller,et al.  Synthesis of Well-Defined Polystyrene-Block-Polyglycidol (PS-b-PG) Block Co-polymers by Anionic Polymerization , 2010 .

[71]  R. Kjellander,et al.  Water structure and changes in thermal stability of the system poly(ethylene oxide)–water , 1981 .

[72]  A. Dworak,et al.  High molecular arborescent polyoxyethylene with hydroxyl containing shell , 2004 .

[73]  M. Chmiela,et al.  Principle of a new immunoassay based on electrophoretic mobility of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres: application for the determination of helicobacter pylori IgG in blood serum. , 2005, Macromolecular bioscience.

[74]  S. Vyazovkin,et al.  Non‐oxidative Thermal Degradation of Poly(glycidol), Poly(glycidol)‐g‐L‐lactide, and Poly(glycidol)‐g‐glycolide , 2011 .

[75]  T. Ishida,et al.  Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. , 2008, International journal of pharmaceutics.

[76]  T. Tsuruta,et al.  Polymerization of epoxyorganosilanes , 1968 .

[77]  A. Dworak,et al.  Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers , 2006 .

[78]  A. Dworak,et al.  High molecular weight functionalized poly(ethylene oxide) , 2002 .

[79]  H. Keul,et al.  Polyglycidol based amphiphilic double-comb copolymers and their self-association in aqueous solution. , 2011, Macromolecular rapid communications.

[80]  E. J. Vandenberg Polymerization of glycidol and its derivatives: A new rearrangement polymerization , 1985 .

[81]  S. Słomkowski,et al.  Polymer Nano‐ and Microparticle Based Systems for Medical Diagnostics , 2010 .

[82]  H. Staudinger,et al.  Über hochpolymere Verbindungen, 20. Mitteil.: Über die Poly‐äthylenoxyde , 1929 .

[83]  A. Dworak,et al.  Poly(α-t-butoxy-ω-styrylo-glycidol): a new reactive surfactant , 1998 .

[84]  A. Dworak,et al.  Novel reactive thermosensitive polyethers – control of transition point , 2004 .

[85]  D. Brooks,et al.  Comparison of Hyperbranched and Linear Polyglycidol Unimolecular Reverse Micelles as Nanoreactors and Nanocapsules , 2005 .

[86]  H. Frey,et al.  α,ωn‐Heterotelechelic Hyperbranched Polyethers Solubilize Carbon Nanotubes , 2010 .

[87]  H. Schmalz,et al.  One-pot synthesis of polyglycidol-containing block copolymers with alkyllithium initiators using the phosphazene base t-BuP4 , 2007 .

[88]  R. Haag,et al.  Linear and Hyperbranched Polyglycerol Derivatives as Excellent Bioinert Glass Coating Materials , 2011 .

[89]  M. Möller,et al.  Polyglycidol-Based Prepolymers to Tune the Nanostructure of Microgels , 2014 .

[90]  T. Basinska,et al.  Hydrophilic Microspheres Containing αα‐tert Butoxy‐ωω‐vinylbenzyl‐polyglycidol for Immunodiagnostics: Synthesis, Properties and Biomedical Applications , 2009 .

[91]  M. Möller,et al.  Synthesis and degradation of biomedical materials based on linear and star shaped polyglycidols , 2009 .

[92]  H. Frey,et al.  Die vielen Gesichter des Poly(ethylenglykol)s , 2011 .

[93]  S. Carlotti,et al.  Selective Ring-Opening Polymerization of Glycidyl Methacrylate: Toward the Synthesis of Cross-Linked (Co)polyethers with Thermoresponsive Properties , 2011 .

[94]  Koichi Ito,et al.  Micellar copolymerization of styrene with poly(ethylene oxide) macromonomer in water : Approach to unimolecular nanoparticles via pseudo-living radical polymerization , 2000 .

[95]  Holger Frey,et al.  Functional PEG-based polymers with reactive groups via anionic ROP of tailor-made epoxides , 2012 .

[96]  H. Frey,et al.  A road less traveled to functional polymers: epoxide termination in living carbanionic polymer synthesis. , 2010, Macromolecular rapid communications.

[97]  R. Haag,et al.  Switchable, biocompatible surfaces based on glycerol copolymers. , 2011, Chemical communications.

[98]  C. Suschek,et al.  Electrospun fibers from functional polyglycidol/poly(ε‐caprolactone) blends with defined surface properties , 2012 .

[99]  S. Carlotti,et al.  Direct Synthesis of α-Azido,ω-hydroxypolyethers by Monomer-Activated Anionic Polymerization , 2009 .

[100]  S. Carlotti,et al.  Linear High Molar Mass Polyglycidol and its Direct α-Azido Functionalization , 2011 .

[101]  A. Iovescu,et al.  Spectroscopical properties of a DTAF-labeled hydrophilic–hydrophobic copolymer in water and surfactant micelles , 2013 .

[102]  F. Busqué,et al.  Catechol‐Based Biomimetic Functional Materials , 2013, Advanced materials.

[103]  H. Frey,et al.  Rapid Access to Polyfunctional Lipids with Complex Architecture via Oxyanionic Ring-Opening Polymerization , 2011 .

[104]  D. Plusquellec,et al.  Synthese de polyglycerols lineaires et cycliques. Tensioactifs polyglyceryles : synthese et caracterisations , 2002 .

[105]  H. Frey,et al.  Hyperbranched Polymers Prepared via the Core-Dilution/Slow Addition Technique: Computer Simulation of Molecular Weight Distribution and Degree of Branching , 1998 .

[106]  A. Maître,et al.  Thermoresponsive colloidal crystals built from core-shell poly(styrene/alpha-tert-butoxy-omega-vinylbenzylpolyglycidol) microspheres. , 2010, Langmuir.

[107]  C. Tsvetanov,et al.  Polyglycidol-Based Analogues of Pluronic Block Copolymers. Light Scattering and Cryogenic Transmission Electron Microscopy Studies , 2007 .

[108]  H. Frey,et al.  Synthesis and Characterization of Poly(glyceryl glycerol) Block Copolymers , 2008 .

[109]  H. Adler,et al.  Polyether core-shell cylinder-polymerization of polyglycidol macromonomers , 2005 .

[110]  S. Carlotti,et al.  Controlled High-Speed Anionic Polymerization of Propylene Oxide Initiated by Onium Salts in the Presence of Triisobutylaluminum , 2007 .

[111]  U. Schubert,et al.  Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. , 2010, Angewandte Chemie.

[112]  H. Frey,et al.  Hyperbranched–linear–hyperbranched ABA‐type block copolymers based on poly(ethylene oxide) and polyglycerol , 2009 .

[113]  A. Dworak,et al.  Polyglycidol-block-poly(ethylene oxide)-block-polyglycidol: synthesis and swelling properties , 1999 .

[114]  H. Keul,et al.  Phosphonoethylated Polyglycidols: A Platform for Tunable Enzymatic Grafting Density , 2013 .

[115]  M. Chehimi,et al.  Properties of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[116]  A. Dworak,et al.  Hydrodynamic behavior of high molar mass linear polyglycidol in dilute aqueous solution. , 2007, The journal of physical chemistry. B.

[117]  D. Taton,et al.  Synthesis of chiral and racemic functional polymers from glycidol and thioglycidol , 1994 .

[118]  Holger Frey,et al.  Hyperbranched molecular nanocapsules: comparison of the hyperbranched architecture with the perfect linear analogue. , 2002, Journal of the American Chemical Society.

[119]  H. Frey,et al.  Water-Soluble “Poly(propylene oxide)” by Random Copolymerization of Propylene Oxide with a Protected Glycidol Monomer , 2012 .

[120]  H. Frey,et al.  Mixed layers of DPPC and a linear poly(ethylene glycol)-b-hyperbranched poly(glycerol) block copolymer having a cholesteryl end group , 2012, Colloid and Polymer Science.

[121]  C. Tsvetanov,et al.  Functionalized micelles from new ABC polyglycidol-poly(ethylene oxide)-poly(d,l-lactide) terpolymers , 2005 .

[122]  Wilhelm T S Huck,et al.  Effect of polymer brush architecture on antibiofouling properties. , 2011, Biomacromolecules.

[123]  M. Möller,et al.  Synthesis and Characterization of Amphiphilic Polyethers Based on Tetrahydrofuran and Glycidol: Antibacterial Assessment , 2009 .

[124]  J. Kizhakkedathu,et al.  Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution. , 2012, Biomaterials.

[125]  Holger Frey,et al.  Hyperbranched Polyglycerols with Elevated Molecular Weights: A Facile Two-Step Synthesis Protocol Based on Polyglycerol Macroinitiators , 2009 .

[126]  Francesco M Veronese,et al.  PEGylation, successful approach to drug delivery. , 2005, Drug discovery today.

[127]  A. Dworak,et al.  Triblock and Radial Star‐Block Copolymers Comprised of Poly(ethoxyethyl glycidyl ether), Polyglycidol, Poly(propylene oxide) and Polystyrene Obtained by Anionic Polymerization Initiated by Cs Initiators , 2004 .

[128]  Samuel Zalipsky,et al.  Poly(ethylene glycol): Chemistry and Biological Applications , 1997 .

[129]  R. Zentel,et al.  Supramolecular Linear-g-Hyperbranched Graft Polymers: Topology and Binding Strength of Hyperbranched Side Chains , 2013 .

[130]  H. Keul,et al.  Novel Biodegradable Heterografted Polymer Brushes Prepared via a Chemoenzymatic Approach , 2009 .

[131]  T. Basinska Adsorption studies of human serum albumin, human γ-globulins, and human fibrinogen on the surface of P(S/PGL) microspheres , 2001, Journal of biomaterials science. Polymer edition.

[132]  M. Möller,et al.  Synthesis of Reactive Amphiphilic Copolymers Based on Oligoglycidol Macromonomers , 2011 .

[133]  S. Rangelov,et al.  Structure and Interactions in Large Compound Particles Formed by Polyglycidol-Based Analogues to Pluronic Copolymers in Aqueous Solution , 2007 .

[134]  M. Möller,et al.  Post-polymerization functionalization of linear polyglycidol with diethyl vinylphosphonate. , 2011, Chemical communications.

[135]  H. Keul,et al.  Chain transfer reactions limit the molecular weight of polyglycidol prepared via alkali metal based initiating systems , 2009 .

[136]  N. Melik-Nubarov,et al.  Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. , 2005, Biochemistry.

[137]  Peter Gasteier,et al.  Ring-Opening Polymerization of ε-Caprolactone by Means of Mono- and Multifunctional Initiators: Comparison of Chemical and Enzymatic Catalysis , 2006 .

[138]  Amarnath Sharma,et al.  Liposomes in drug delivery: Progress and limitations , 1997 .

[139]  H. Adler,et al.  Synthesis of poly(glycidol)‐block‐poly(N‐isopropylacrylamide) copolymers using new hydrophilic poly(glycidol) macroinitiator , 2008 .

[140]  C. Tsvetanov,et al.  Aqueous Solution Properties of Polyglycidol-Based Analogues of Pluronic Copolymers. Influence of the Poly(propylene oxide) Block Molar Mass , 2010 .

[141]  Koichi Ito,et al.  Poly(ethylene oxide) macromonomers. 8. Preparation and polymerization of ι-hydroxypoly(ethylene oxide) macromonomers , 1991 .

[142]  Rudolf Zentel,et al.  Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics , 2011 .

[143]  A. Lendlein,et al.  Characterization of Oligo(Ethylene Glycol) and Oligoglycerol Functionalized Poly(Ether Imide) by Angle-Dependent X-Ray Photoelectron Spectroscopy , 2012, Journal of applied biomaterials & functional materials.

[144]  H. Keul,et al.  Chemoenzymatic Approach toward Heterografted Molecular Bottle Brushes , 2007 .

[145]  Star Shaped Polyglycidols End Capped with Vinyl sulfonate Groups and Conjugation Reaction with Dodecylamine , 2010 .

[146]  H. Frey,et al.  Synthesis and noncovalent protein conjugation of linear-hyperbranched PEG-poly(glycerol) alpha,omega(n)-telechelics. , 2009, Journal of the American Chemical Society.

[147]  C. Tsvetanov,et al.  Poly(glycidol)-Based Analogues to Pluronic Block Copolymers. Synthesis and Aqueous Solution Properties , 2006 .

[148]  M. Chehimi,et al.  Studies of the surface layer structure and properties of poly(styrene/α-t-butoxy-ω-polyglycidol) microspheres by carbon nuclear magnetic resonance, X-ray photoelectron spectroscopy, and the adsorption of human serum albumin and γ-globulins , 2004 .

[149]  Junlian Huang,et al.  Preparation of Star‐Shaped ABC Copolymers of Polystyrene‐Poly(ethylene oxide)‐Polyglycidol Using Ethoxyethyl Glycidyl Ether as the Cap Molecule , 2007 .

[150]  M. Chehimi,et al.  Synthesis and characterization of poly(styrene/α-t-butoxy-ω-vinylbenzyl-polyglycidol) microspheres , 2001 .

[151]  B. Miksa,et al.  New types of microspheres and microsphere‐related materials for medical diagnostics , 2002 .

[152]  M. Moeller,et al.  Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion , 2009 .

[153]  T. Taguchi,et al.  Spectroscopic studies on interactions between cholesterol-end capped polyethylene glycol and liposome. , 2012, Colloids and surfaces. B, Biointerfaces.

[154]  A. Dworak,et al.  Polyglycidol—how is it synthesized and what is it used for? , 2013 .

[155]  Y. Chau,et al.  Synthesis of linear polyether polyol derivatives as new materials for bioconjugation. , 2009, Bioconjugate chemistry.

[156]  M. Libera,et al.  Synthesis and thermoresponsive properties of four arm, amphiphilic poly(tert-butyl-glycidylether)-block-polyglycidol stars , 2011 .

[157]  S. Penczek,et al.  One-pot synthesis of star-shaped macromolecules containing polyglycidol and poly(ethylene oxide) arms. , 2005, Biomacromolecules.

[158]  N. Spassky,et al.  Preparation et proprietes des poly(R)-glycidols , 1983 .

[159]  M. Möller,et al.  Enhanced hydrolytic degradation of heterografted polyglycidols: phosphonoethylated monoester and polycaprolactone grafts. , 2013, Biomacromolecules.

[160]  A. Dworak,et al.  Synthesis and Associating Properties of Poly(ethoxyethyl glycidyl ether)/Poly(propylene oxide) Triblock Copolymers , 2004 .

[161]  A. Lendlein,et al.  Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol). , 2013, Clinical hemorheology and microcirculation.

[162]  S. Carlotti,et al.  Synthesis of Linear High Molar Mass Glycidol-Based Polymers by Monomer-Activated Anionic Polymerization , 2010 .

[163]  H. Frey,et al.  Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates. , 2012, Biomacromolecules.

[164]  H. Frey,et al.  Block copolymers in giant unilamellar vesicles with proteins or with phospholipids. , 2013, Faraday discussions.