Optimal control law for classical and multiconjugate adaptive optics.

Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.

[1]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[2]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[3]  Robert H. Dicke,et al.  Phase-contrast detection of telescope seeing errors and their correction. , 1975 .

[4]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[5]  Benjamin L. McGlamery,et al.  Computer Simulation Studies Of Compensation Of Turbulence Degraded Images , 1976, Other Conferences.

[6]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[7]  Jacques M. Beckers,et al.  Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. , 1988 .

[8]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[9]  Gerard Rousset,et al.  Temporal characterization of atmospheric wavefront for adaptive optics , 1992 .

[10]  Francois Rigaut,et al.  Laser guide star in adaptive optics : the tilt determination problem , 1992 .

[11]  F. Roddier,et al.  One-dimensional spectra of turbulence-induced Zernike aberrations: time-delay and isoplanicity error in partial adaptive compensation , 1993 .

[12]  R. Paschall,et al.  Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. , 1993, Applied optics.

[13]  Eric Gendron,et al.  Astronomical adaptive optics. I. Modal control optimization. , 1994 .

[14]  Jean-Marc Conan,et al.  Etude de la correction partielle en optique adaptative , 1994 .

[15]  B. Ellerbroek First-order performance evaluation of adaptive optics systems for atmospheric turbulence compensatio , 1994 .

[16]  Eric Gendron Optimisation de la commande modale en optique adaptative : applications à l'astronomie , 1995 .

[17]  J. Conan,et al.  Wave-front temporal spectra in high-resolution imaging through turbulence , 1995 .

[18]  Eric Gendron,et al.  Astronomical adaptive optics. II. Experimental results of an optimized modal control. , 1995 .

[19]  Troy A. Rhoadarmer,et al.  Optimizing the performance of closed-loop adaptive-optics control systems on the basis of experimentally measured performance data , 1997 .

[20]  Caroline Dessenne Commande modale et predictive en optique adaptative , 1998 .

[21]  G Rousset,et al.  Optimization of a predictive controller for closed-loop adaptive optics. , 1998, Applied optics.

[22]  Pierre-Yves Madec Adaptive Optics in Astronomy: Control techniques , 1999 .

[23]  J. Conan,et al.  Efficient phase estimation for large-field-of-view adaptive optics. , 1999, Optics letters.

[24]  R. Ragazzoni,et al.  No Laser Guide Stars for adaptive optics in giant telescopes , 1999 .

[25]  M. Séchaud Adaptive Optics in Astronomy: Wave-front compensation devices , 1999 .

[26]  E. Marchetti,et al.  Modal tomography for adaptive optics , 1999 .

[27]  Gérard Rousset,et al.  Adaptive Optics in Astronomy: Wave-front sensors , 1999 .

[28]  A. Tokovinin,et al.  Isoplanatism in a multiconjugate adaptive optics system. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Gerard Rousset,et al.  Status of the VLT Nasmyth adaptive optics system (NAOS) , 2000, Astronomical Telescopes and Instrumentation.

[30]  Thierry Fusco,et al.  Correction partielle et anisoplanétisme en optique adaptative : traitements a posteriori et optique adaptative multiconjuguée , 2000 .

[31]  Laurent M. Mugnier,et al.  Isoplanatic angle and optimal guide star separation for multiconjugate adaptive optics , 2000, Astronomical Telescopes and Instrumentation.

[32]  Francois Rigaut,et al.  Principles, limitations, and performance of multiconjugate adaptive optics , 2000, Astronomical Telescopes and Instrumentation.

[33]  Francois Rigaut,et al.  Comparison of multiconjugate adaptive optics configurations and control algorithms for the Gemini South 8-m telescope , 2000, Astronomical Telescopes and Instrumentation.

[34]  Miska Le Louarn Etoiles laser pour les grands telescopes: effet de cone et implications astrophysiques , 2000 .

[35]  Gerard Rousset,et al.  Multiconjugate adaptive optics: comparison of phase reconstruction approaches for large field of view , 2001, SPIE Remote Sensing.

[37]  B. L. Ellerbroek,et al.  Adaptive wavefront control algorithms for closed loop adaptive optics , 2001 .

[38]  Onera,et al.  The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR , 2001, astro-ph/0109289.

[39]  L M Mugnier,et al.  Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  Brian J. Bauman,et al.  Practical high-order adaptive optics systems for extrasolar planet searches , 2002, SPIE Optics + Photonics.

[41]  Thierry Fusco,et al.  VLT-"Planet Finder": specifications for a ground-based high contrast imager , 2002 .

[42]  Gerard Rousset,et al.  Noise propagation for multiconjugate adaptive optics system , 2002, SPIE Remote Sensing.

[43]  F. Courbin,et al.  The FALCON Concept: Multi-Object Spectroscopy Combined with MCAO in Near-IR , 2002 .

[44]  Donald T. Gavel,et al.  Toward Strehl-optimizing adaptive optics controllers , 2003, SPIE Astronomical Telescopes + Instrumentation.

[45]  Roberto Ragazzoni,et al.  Layer-oriented wavefront sensor for MAD: status and progress report , 2003, SPIE Astronomical Telescopes + Instrumentation.

[46]  Brian J. Bauman,et al.  MCAO for Gemini South , 2003, SPIE Astronomical Telescopes + Instrumentation.

[48]  "Planet Finder" on the VLT: context, goals and critical specifications for adaptive optics , 2003 .

[49]  Eric Gendron,et al.  FALCON: a new-generation spectrograph with adaptive optics for the ESO VLT , 2004, SPIE Remote Sensing.