Comparisons of MIMO SAR antenna arrangements in wide-swath remote sensing

This paper compares four elevation multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) antenna arrangements for wide-swath remote sensing. The signal models and range ambiguity function to signal ratio performance are comparatively compared, along with numerical results. It is shown that, when compared with conventional single-antenna SAR and existing multichannel SAR techniques, MIMO SAR indeed provides a potential solution for wide-swath remote sensing.

[1]  Werner Wiesbeck,et al.  Investigation of a New Multifunctional High Performance SAR System Concept Exploiting MIMO Technology , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Hui Chen,et al.  Linear Frequency Diverse Array Manifold Geometry and Ambiguity Analysis , 2015, IEEE Sensors Journal.

[3]  Xiaofei Zhang,et al.  A Joint Scheme for Angle and Array Gain-Phase Error Estimation in Bistatic MIMO Radar , 2013, IEEE Geoscience and Remote Sensing Letters.

[4]  P. Stoica,et al.  MIMO Radar Signal Processing , 2008 .

[5]  Wen-Qin Wang,et al.  High altitude platform multichannel SAR for wide-area and staring imaging , 2014, IEEE Aerospace and Electronic Systems Magazine.

[6]  Wen-Qin Wang,et al.  MIMO SAR imaging: Potential and challenges , 2013, IEEE Aerospace and Electronic Systems Magazine.

[7]  Xiang Li,et al.  Manifold Sensitivity Analysis for MIMO Radar , 2012, IEEE Geoscience and Remote Sensing Letters.

[8]  Wen-Qin Wang,et al.  Large-Area Remote Sensing in High-Altitude High-Speed Platform Using MIMO SAR , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[10]  Wen-Qin Wang,et al.  MIMO SAR using Chirp Diverse Waveform for Wide-Swath Remote Sensing , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Wen-Qin Wang Space–Time Coding MIMO-OFDM SAR for High-Resolution Imaging , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Wen-Qin Wang,et al.  Virtual Antenna Array Analysis for MIMO Synthetic Aperture Radars , 2012 .

[13]  Dario Tarchi,et al.  MIMO Radar and Ground-Based SAR Imaging Systems: Equivalent Approaches for Remote Sensing , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Wen-Qin Wang,et al.  Mitigating Range Ambiguities in High-PRF SAR With OFDM Waveform Diversity , 2013, IEEE Geoscience and Remote Sensing Letters.

[15]  S. Bertl,et al.  Comparison and tests of different virtual arrays for MIMO radar applications , 2011, 2011 12th International Radar Symposium (IRS).

[16]  Wen-Qin Wang,et al.  MIMO SAR Chirp Modulation Diversity Waveform Design , 2014, IEEE Geoscience and Remote Sensing Letters.

[17]  Wen-Qin Wang,et al.  Two-Antenna SAR With Waveform Diversity for Ground Moving Target Indication , 2014, IEEE Geoscience and Remote Sensing Letters.

[18]  Athanassios Manikas,et al.  Superresolution Multitarget Parameter Estimation in MIMO Radar , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Wen-Qin Wang,et al.  MIMO SAR OFDM Chirp Waveform Diversity Design With Random Matrix Modulation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Wen-Qin Wang,et al.  Large Time-Bandwidth Product MIMO Radar Waveform Design Based on Chirp Rate Diversity , 2015, IEEE Sensors Journal.

[21]  Wen-Qin Wang,et al.  Multi-Antenna Synthetic Aperture Radar , 2013 .

[22]  P. Mancini,et al.  Ambiguity Suppression In Sars Using Adaptive Array Techniques , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[23]  Jens Klare Digital Beamforming for a 3D MIMO SAR - Improvements through Frequency and Waveform Diversity , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.