An analysis of finite element approximation in electrical impedance tomography

We present a finite element analysis of electrical impedance tomography for reconstructing the conductivity distribution from electrode voltage measurements by means of Tikhonov regularization. Two popular choices of the penalty term, i.e., the H1(Ω)-norm smoothness penalty and total variation seminorm penalty, are considered. A piecewise linear finite element method is employed for discretizing the forward model, i.e., the complete electrode model, the conductivity, and the penalty functional. The convergence of the finite element approximations for the Tikhonov model on both polyhedral and smooth curved domains is established. This provides rigorous justifications for the ad hoc discretization procedures. Numerical experiments confirm the convergence analysis.

[1]  Bangti Jin,et al.  A reconstruction algorithm for electrical impedance tomography based on sparsity regularization , 2012 .

[2]  L. Evans Measure theory and fine properties of functions , 1992 .

[3]  James H. Bramble,et al.  A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries , 1994 .

[4]  Ville Kolehmainen,et al.  The Inverse Conductivity Problem with an Imperfectly Known Boundary , 2005, SIAM J. Appl. Math..

[5]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: a numerical study , 2006 .

[6]  Jari P. Kaipio,et al.  Tikhonov regularization and prior information in electrical impedance tomography , 1998, IEEE Transactions on Medical Imaging.

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[9]  Diethard Pallaschke,et al.  Foundations of mathematical optimization : convex analysis without linearity , 1997 .

[10]  I. Gavrilyuk Book Review: Variational analysis in Sobolev and BV spaces , 2007 .

[11]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..

[12]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[13]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[14]  Ville Kolehmainen,et al.  The Inverse Conductivity Problem with an Imperfectly Known Boundary in Three Dimensions , 2007, SIAM J. Appl. Math..

[15]  J.P. Kaipio,et al.  Three-dimensional electrical impedance tomography based on the complete electrode model , 1999, IEEE Transactions on Biomedical Engineering.

[16]  Andy Adler,et al.  In Vivo Impedance Imaging With Total Variation Regularization , 2010, IEEE Transactions on Medical Imaging.

[17]  Richard H. Bayford,et al.  Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method , 2003, NeuroImage.

[18]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: convergence by local injectivity , 2008 .

[19]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[20]  J. Kaipio,et al.  Electrical Resistance Tomography Imaging of Concrete , 2010 .

[21]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[22]  K. Gröger,et al.  AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .

[23]  Tim Palmer,et al.  Singular vectors, predictability and ensemble forecasting for weather and climate , 2013 .

[24]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[25]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[26]  P. Maass,et al.  Tikhonov regularization for electrical impedance tomography on unbounded domains , 2003 .

[27]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[28]  F. de Gournay,et al.  Uniform stability estimates for the discrete Calderon problems , 2011 .

[29]  P. Maass,et al.  Sparsity regularization for parameter identification problems , 2012 .

[30]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[31]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[32]  Bangti Jin,et al.  A Semismooth Newton Method for L1 Data Fitting with Automatic Choice of Regularization Parameters and Noise Calibration , 2010, SIAM J. Imaging Sci..

[33]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[34]  P. Bowen,et al.  Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment , 2011 .

[35]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[36]  Zhiming Chen,et al.  An Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems , 1999 .

[37]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[38]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[39]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[40]  Jari P. Kaipio,et al.  Sparsity reconstruction in electrical impedance tomography: An experimental evaluation , 2012, J. Comput. Appl. Math..

[41]  L. Rondi On the regularization of the inverse conductivity problem with discontinuous conductivities , 2008 .

[42]  EquationsThierry GALLOUETandAlexis Monier,et al.  On the Regularity of Solutions to Elliptic , 2007 .

[43]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .